Cho B = 3 + 33 + 35 +....+ 31991
Chứng tỏ rằng B chia hết cho 13 và 41.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\\ C=\left(3+3^3+3^5\right)\left(1+3^6+...+3^{1986}\right)\\ C=273\left(1+3^6+...+3^{1986}\right)\\ C=13\cdot21\left(1+3^6+...+3^{1986}\right)⋮13\\ C=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5+3^7\right)+3^8\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\\ C=\left(3+3^3+3^5+3^7\right)\left(1+3^8+...+3^{1984}\right)\\ C=2460\left(1+3^8+...+3^{1984}\right)\\ C=41\cdot60\left(1+3^8+...+3^{1984}\right)⋮41\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)