Cho tam giác ABC có góc B = góc C . Trên AB lấy điểm M, trên AC lấy điểm N .Sao cho BM= CN .
a . cm CM=BN
b. So sánh góc ABN và góc ACN
hinh may bn tu ve o ngoai mk khog bit ve vao nhanh dug mk tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : AB = AC (gt)
BM = CN (gt)
\(\Rightarrow\)AB - BM = AC - CN
\(\Rightarrow\)AM = AN (ĐPCM)
b) Xét △ABN và △ACM có :
AB = AC (gt)
AM = AN (cmt)
\(\widehat{A}\)chung (gt)
\(\Rightarrow\)△ABN = △ACM (c.g.c)
\(\Rightarrow\)BN = CM (c.c.t.ứ)
\(\widehat{ABN}=\widehat{ACM}\)(c.g.t.ứ)
c) Ta có : △ABN = △ACM
\(\Rightarrow\widehat{AMC}=\widehat{ANB}\)(c.g.t.ứ)
\(\Rightarrow\widehat{BNC}=\widehat{CMB}\)(cùng bù với hai góc bằng nhau)
Xét △OMB và △ONC có :
\(\widehat{OMB}=\widehat{ONC}\)(cmt)
\(\widehat{OBM}=\widehat{OCN}\)(cmt)
BM = CN (gt)
\(\Rightarrow\)△OMB = △ONC (g.c.g)
\(\Rightarrow\)OB = OC (c.c.t.ứ)
Xét △ABO và △ACO có :
AB = AC (gt)
AO chung (gt)
OB = OC (cmt)
\(\Rightarrow\)△ABO = △ACO (c.c.c.)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)(c.g.t.ứ)
\(\Rightarrow\)AO là phân giác của \(\widehat{BAC}\)
a) Xét tam giác ABM và tam giác ADM có:
AB = AD ( gt ), góc BAM = góc DAM ( gt ) , AM chung
=> tam giác ABM = tam giác ADM ( c.g.c )
=> BM = DM ( 2 cạnh tương ứng )
b) Vì tam giác ABM = tam giác ADM ( cmt )
=> góc ADM = góc ABM ( 2 góc tương ứng )
Xét tam giác DAK và tam giác BAC có :
góc A chung, AB = AD ( gt ), góc ADK = góc ABC (cmt)
=> tam giác DAK = tam giác BAC ( g.c.g )
c) Vì tam giác DAK = tam giác BAC ( cmt )
=> AK = AC ( 2 cạnh tương ứng )
=> tam giác AKC cân tại A
d) Xét tam giác ABC có AM là phân giác
\(\Rightarrow\frac{BM}{AB}=\frac{MC}{AC}\)
Mà AB < AC (gt). Giả sử AB.k = AC
\(\Rightarrow\frac{BM.k}{AB.k}=\frac{MC}{AC}\)( k thuộc N* )
=> BM.k = MC
Mà k thuộc N* => BM < MC
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng
tick minh roi minh giai cho
phạm tuấn quang huy lấy ảnh mình