tìm số nhỏ nhất biết
a) khi chia 5 dư 1 , chia 7 dư 5
b) khi chia 21 dư 2 , chia 12 dư 5
giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
N
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Nếu mình đúng thì các bạn k mình nhé
Vì n không chia hết cho 35 nên n có dạng 35k + r (k, r thuộc N, r <35), trong="" đó="" r="" chia="" 5="" dư="" 1,="" chia="" 7="" dư="">
Số nhỏ hơn 35 chia cho 7 dư 5 là 5, 12, 19, 26, 33, trong đó chỉ có 26 chia cho 5 dư 1. Vậy r = 26.
Số nhỏ nhất có dạng 35k + 36 là 26.
a) Đặt n là số nhỏ nhất chia 5 dư 1, chia 7 dư 5
Ta có: n chia 5 dư 1 => n+9 chia hết cho 5 (1)
n chia 7 dư 5 => n+9 chia hết cho 7 (2)
Từ (1)(2) và n nhỏ nhất => n+9 \(\in\) BCNN(5;7)=35
n+9=35 => n=26
b) Đặt e là số tự nhiên nhỏ nhất chia 21 dư 2, chia 12 dư 5
Ta có : e chia 21 dư 2 => e+19 chia hết cho 21 (1)
e chia 12 dư 5 => e+19 chia hết cho 12 (2)
Từ (1)(2) và e nhỏ nhất => e+19 \(\in\) BCNN(21;12)=84
e+19=84 => e=65
Gọi số đó là a
Vì a chia 2 dư 1; chia 3 dư 2; chia 4 dư 3; chia 5 dư 4; chia 6 dư 5; chia 7 dư 6 nên (a + 1) \(⋮\)2; 3; 4; 5; 6; 7
Số bé nhất chia hết cho các số từ 2 đến 7 là 420
số cần tìm là : 420 - 1 = 419
Đáp số : 419