K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

\(\frac{x-2}{x+2}\)\(-\frac{3}{x-2}\)=\(\frac{2\left(x-11\right)}{x^2-4}\)

\(\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)\(-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{2\left(x-11\right)}{x^2-4}\)

\(\frac{x^2-2x-2x+4}{\left(x+2\right)\left(x-2\right)}\)-\(\frac{3x+6}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{2x-22}{\left(x+2\right)\left(x-2\right)}\)

\(x^2-2x-2x+4-3x-6=2x-22\)

\(x^2-2x-2x-3x-2x=-4+6-22\)

\(x^2-9x=-20\)

\(x\left(x-9\right)=-20\)

\(x=-20\) hoặc \(x-9=-20\)

⇔x = \(-20\) hoặc x= \(-11\)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

5 tháng 6 2015

đỡ hơn chưa??? mong các bn giúp mình vs

 

5 tháng 6 2015

Vê trái: 

\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)

\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)

Vế phải:

\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)

\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải

=> đpcm

 

b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)

\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)

\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)

\(9x-10=0\)

hay 9x=10

\(x=\frac{10}{9}\)

Vậy: \(x=\frac{10}{9}\)

c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)

\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)

\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)

\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)

\(6x-3-5x+10-3x-21=0\)

\(-2x-14=0\)

\(-2x=14\)

hay x=-7

Vậy: x=-7

d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)

\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

\(6x-18+7x-35-13x-4=0\)

\(-21\ne0\)

Vậy: x∈∅

e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)

\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)

\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)

\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)

\(-12x+96=0\)

\(-12x=-96\)

hay x=8

Vậy: x=8

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

Vậy x=\(\frac{20}{27}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)

\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)

\(\frac{9}{11}-x=\frac{-2}{11}\)

\(x=\frac{9}{11}-\frac{-2}{11}\)

\(x=1\)

Vậy x=1

\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)

\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)

\(\frac{-11}{12}\cdot x=\frac{21}{12}\)

\(x=\frac{-21}{11}\)

Vậy x=\(\frac{-21}{11}\)

\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)

\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)

\(\frac{3}{2}+x=\frac{23}{4}\)

\(x=\frac{17}{4}\)

Vậy x=\(\frac{17}{4}\)

\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)

\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)

\(\frac{3}{4}-x:\frac{2}{15}=-13\)

\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)

\(x:\frac{2}{15}=\frac{45}{4}\)

\(x=\frac{3}{2}\)

Vậy x=\(\frac{3}{2}\)

\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=1\)

\(\frac{1}{6}-x=2\)

\(x=\frac{1}{6}-2\)

\(x=\frac{-11}{6}\)

Vậy x=\(\frac{-11}{6}\)

\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)

\(1-2x=\frac{-1}{10}\)

\(2x=1-\frac{-1}{10}\)

\(2x=\frac{11}{10}\)

\(x=\frac{11}{20}\)

Vậy x=\(\frac{11}{20}\)

\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)

\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)

\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\)                                                         \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)

\(\frac{1}{2}x=\frac{11}{12}\)                                                                        \(\frac{1}{2}x=\frac{-1}{4}\)

\(x=\frac{11}{6}\)                                                                              \(x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

tk mình đi mình làm nốt cho hjhj ^^

a) ĐKXĐ: \(x\notin\left\{\frac{1}{3};\frac{-11}{3}\right\}\)

Ta có: \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)

\(\Leftrightarrow\frac{2\left(1-3x\right)\left(3x+11\right)}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}=\frac{\left(3x+11\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}-\frac{3\left(1-3x\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}\)

\(\Leftrightarrow-18x^2-60x+22=9x^2+66x+121-3\left(1-6x+9x^2\right)\)

\(\Leftrightarrow-18x^2-60x+22-9x^2-66x-121+3\left(1-6x+9x^2\right)=0\)

\(\Leftrightarrow-27x^2-126x-99+3-18x+27x^2=0\)

\(\Leftrightarrow-144x-96=0\)

\(\Leftrightarrow-144x=96\)

hay \(x=\frac{-2}{3}\)(tm)

Vậy: \(x=\frac{-2}{3}\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3