Bài : Chứng minh rằng "Nếu cộng các giá trị của biến lượng với cùng một số thì số trung bình của biến lượng cũng được cộng với số đó".
Giải với nha, mai mình cần rồi.^.^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các giá trị của biến lượng : \(x_1;x_2;...;x_k\)có tần số tương ứng là: \(n_1;n_2;...;n_k\)
Trung bình của biến lượng \(\overline{X}=\frac{n_1.x_1+n_2.x_2+...+n_k.x_k}{n_1+n_2+...+n_k}\)
Nếu trừ các giá trị biến lượng cùng một số khi đó ta có trung bình mới của biến lượng:
\(\frac{n_1\left(x_1-a\right)+n_2.\left(x_2-a\right)+...+n_k.\left(x_k-a\right)}{n_1+n_2+...+n_k}=\frac{n_1.x_1+n_2.x_2+...+n_k.x_k-a\left(n_1+n_2+...+n_k\right)}{n_1+n_2+...+n_k}\)
\(=\frac{n_1.x_1+n_2.x_2+...+n_k.x_k}{n_1+n_2+...+n_k}-\frac{a\left(n_1+n_2+...+n_k\right)}{n_1+n_2+...+n_k}=\overline{X}-a\)
Giả sử:
Ta có:
\(N=x_1+x_2+x_3+...+x_k\Rightarrow\overline{X}=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}\)
Giả sử a là số được trừ đi ở mọi biến lượng
Vậy, giá trị của các biến lượng là:
\(\left(x_1-a\right),\left(x_2-a\right),\left(x_3-a\right),...,\left(x_k-a\right).\)
Suy ra :
\(\overline{X}=\frac{\left(x_1-a\right)n_1+\left(x_2-a\right)n_2+\left(x_3-a\right)n_3+...+\left(x_k-a\right)n_k}{N}\)
\(=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k+\left(-n_1-n_2-n_3-...-n_k\right)a}{N}\)
\(=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k-Na}{N}\)
\(=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}-a=\overline{X}-a\left(đpcm\right)\)
Gọi các giá trị và tần số lần lượt là: \(x_1;x_2;...;x_k\)và \(n_1;n_2;...;n_k\)
Gọi số trung bình cộng là: \(\overline{X}\)
Gọi a là số bất kì
Theo đề bài ta có:
\(\overline{X}=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}\)
Suy ra: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}+a\)
Mà \(N=n_1+n_2+...+n_k\)
Do vậy: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2+n_2+...+x_k\cdot n_k+a\left(n_1+n_2+...+n_k\right)}{N}\)
Tức: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k+a\cdot n_1+a\cdot n_2+...+a\cdot n_k}{N}\)
Vậy \(\overline{X}+a=\frac{\left(x_1+a\right)\cdot n_1+\left(x_2+a\right)\cdot n_2+...+\left(x_k+a\right)\cdot n_k}{N}\)(đpcm)
Giải:
Giả sử
- \(x_1,x_2,x_3,.....,x_k\)là k có giá trị khác nhau về biến lượng
- \(m_1,m_2,m_3,...,m_k\)là k tần số tương ứng.
Ta có: \(n=m_1+m_2+m_3+...+m_k\)
Suy ra: \(\overline{x}=\frac{x_1m_1+x_2m_2+....+x_km_k}{n}\)
Giả sử a là số được cộng thêm vào mỗi biến lượng.
Vậy giá trị của các biến lượng là: \(\left(x_1+a\right),\left(x_2+a\right),...\left(x_k+a\right)\)
Khi đó:
\(\overline{X}=\frac{\left(x_1+a\right)m_1+\left(x_2+a\right)m_2+....+\left(x_k+a\right)m_k}{n}\)
\(=\frac{x_1m_1+x_2m_2+...+x_km_k+\left(m_1+m_2+..+m_k\right)a}{n}\)
\(=\frac{x_1m_1+x_2m_2+x_3m_3+...+x_km_k+na}{n}\)
\(=\frac{x_1m_1+x_2m_2+x_3m_3+...+x_km_k}{n}+a=\overline{x}+a\left(đpcm\right)\)