Cho hình bình hành ABCD , \(BD\perp BC\), biết AB = a , \(\widehat{A}=\alpha\). Tính diện tích hình bình hành đó .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BD=AB.sinA=a.sin(alpha)
AD=AB.cosA=a.cos(alpha)
=>S=2SABD
=BD.AD=a2.sin(alpha).cos(alpha)
Chiều cao là \(\dfrac{10+10}{2}=10\left(cm\right)\)
Diện tích hbh là \(10\cdot6=60\left(cm^2\right)\)
a, Vì AD//BC nên \(\widehat{ADE}=\widehat{CBF}\) (so le trong)
Xét tg AED và tg CFB có
\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{CBF}\\AD=BC\left(hbh.ABCD\right)\\\widehat{AED}=\widehat{CFB}\left(=90^0\right)\end{matrix}\right.\)
Do đó \(\Delta AED=\Delta CFB\left(ch-gn\right)\)
b, Vì \(\Delta AED=\Delta CFB\left(cmt\right)\) nên \(AE=CF\)
Mà AE//CF (⊥BD) nên AECF là hbh
hình bình hành ABCD là hình chữ nhật( vì có 1 góc vuông)
Diện tích hình chữ nhật ABCD là
S= AB *AC= 3*5= 15 cm vuông
a) Cạnh đáy AB là: 9 x 2 =18(cm)
Cạnh bên BC là: 18 - 3 = 15(cm)
Diện tích hình bình hành ABCD là: 18 x 9 = 162(cm2)
b) Chu vi hình bình hành ABCD là: (18 + 15) x 2 = 66(cm)
Đ/S: a) 162 cm2
b) 66 cm