Tìm tất cả giá trị m để y=1/5m^2x^5 -1/3 mx^3 +10x^2 -(m^2 -m-20)x đồng biến trên R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
a: để hàm số đồng biến trên R thì m-1>0
hay m>1
b: Để hàm số nghịch biến thì m>0
\(y'=m^2x^4-mx^2+20x-m^2+m+20\ge0\) ; \(\forall x\in R\)
\(\Leftrightarrow m^2\left(x^4-1\right)-m\left(x^2-1\right)+20\left(x+1\right)\ge0\)
\(\Leftrightarrow m^2\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-m\left(x-1\right)\left(x+1\right)+20\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left[m^2\left(x^2+1\right)\left(x-1\right)-m\left(x-1\right)+20\right]\ge0\) ;\(\forall x\in R\)
Do pt trên luôn có nghiệm \(x=-1\) nên nó phải là nghiệm bội chẵn
\(\Rightarrow m^2\left(x^2+1\right)\left(x-1\right)-m\left(x-1\right)+20=0\) có nghiệm bội lẻ \(x=-1\) (1)
Thay \(x=-1\) vào pt trên ta được:
\(-4m^2+2m+20=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\frac{5}{2}\end{matrix}\right.\)
Thay ngược 2 giá trị m vào (1) để kiểm tra xem có thể phân tích \(y'=\left(x+1\right)^2\left(ax^2+bx+c\right)\) thỏa mãn \(ax^2+bx+c\ge0\) với mọi x hay ko
Hàm là \(y=mx^2-\left(m^2+1\right)x+3\) đúng không nhỉ?
- Với \(m=0\) hàm nghịch biến trên R (không thỏa)
- Với \(m\ne0\) hàm số đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m^2+1}{2m}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m^2+1\le2m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)^2\le0\end{matrix}\right.\)
\(\Rightarrow m=1\)
a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)
=>\(y'=-x^2-2m\cdot x+4\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)
=>\(4m^2+16< =0\)
mà \(4m^2+16>=16>0\forall m\)
nên \(m\in\varnothing\)
b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)
=>\(y'=-x^2-m\cdot x+1\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)
=>\(m^2+4< =0\)
mà \(m^2+4>=4>0\forall m\)
nên \(m\in\varnothing\)
\(y'=m^2x^4-mx^2+20x-m^2+m+20\)
\(y'=\left(x+1\right)\left(m^2x^3-m^2x^2+\left(m^2-m\right)x-m^2+m+20\right)\)
Để \(y'\ge0\) \(\forall x\)
\(\Rightarrow f\left(x\right)=m^2x^3-m^2x^2+\left(m^2-m\right)x-m^2+m+20=0\) có nghiệm bội lẻ \(x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-m^2-m^2-m^2+m-m^2+m+20=0\)
\(\Leftrightarrow-4m^2+2m+20=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=\frac{5}{2}\end{matrix}\right.\)
Thử lại:
Thay \(m=-2\) vào \(f\left(x\right)=4x^3-4x^2+6x+14=\left(x+1\right)\left(4x^2-8x+14\right)\)
Do \(4x^2-8x+14>0\) \(\forall x\Rightarrow y'=\left(x+1\right)^2\left(4x^4-8x+14\right)\ge0\) (t/m)
Thay \(m=\frac{5}{2}\)
\(f\left(x\right)=\frac{25}{4}x^3-\frac{25}{4}x^2+\frac{15}{4}x+\frac{65}{4}=\frac{5}{4}\left(x+1\right)\left(5x^2-10x+13\right)\)
\(\Rightarrow y'=\frac{5}{4}\left(x+1\right)^2\left(5x^2-10x+13\right)\ge0\) (t/m)
Vậy \(m=\left\{-2;\frac{5}{2}\right\}\)
làm sao để tách X+1 ra ạ