K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Em làm cô vui lòng xem giúp em ạ

Có: \(x,y,z>0\)

Nên: \(7^y>1\)

Mà \(7^y+2^z=2^x+1\)(1)

\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)

Xét TH1: y lẻ

Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)

\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)

Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)

\(\Leftrightarrow7^y-1\equiv2\)(mod 4)

Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)

Thay vào PT: \(2^x-2=7^y-1\)

\(\Leftrightarrow2^x=7^y+1\)

\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)

\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)

Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)

Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)

TH2: Khi y chẵn:

\(2^z\left(2^{x-z}-1\right)=7^y-1\)

Vì y chẵn nên: 

\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)

Vì: \(2^{x-z}-1\equiv1\)(mod 2)

Nên: \(2^z=16\Rightarrow z=4\)

Thế vào: 

\(2^x+1=7^y+16\)

\(\Leftrightarrow2^x=7^y+15\)

\(\Leftrightarrow2^x=7^y+7+8\)

\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)

\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)

\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)

Vì S chia hết cho 8

nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)

\(\Rightarrow y=2\)

Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)

Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)

10 tháng 6 2019

\(3\)

\(1\)

\(1\)

18 tháng 6 2019

Vì là số hữu tỉ nên \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{a}{b}\left(a;b\inℕ^∗\right)\)

\(\Leftrightarrow bx+by\sqrt{2013}=ay+az\sqrt{2013}\)

\(\Leftrightarrow az\sqrt{2013}-by\sqrt{2013}=bx-ay\)

\(\Leftrightarrow\sqrt{2013}\left(az-by\right)=bx-ay\)

Vì VP là số hữu tỉ nên VT là số hữu tỉ

Mà \(\sqrt{2013}\)là số vô tỉ

Nên \(bx-ay=az-by=0\)

\(\Rightarrow\hept{\begin{cases}bx=ay\\az=by\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{a}{b}\\\frac{y}{z}=\frac{a}{b}\end{cases}}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow xz=y^2\)

Ta có \(x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z\right)^2-y^2=\left(x-y+z\right)\left(x+y+z\right)\)

Mà \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)(Do \(x-y+z< x+y+z\))

Vì x ; y ; z nguyên dương nên \(x;y;z\ge1\Rightarrow\hept{\begin{cases}x^2\ge x\\y^2\ge y\\z^2\ge z\end{cases}}\)

                                                                    \(\Rightarrow x^2+y^2+z^2\ge x+y+z\)

Dấu "=" xảy ra <=> x = y = z = 1 (thỏa mãn)

18 tháng 6 2019

Theo đề ra ta có: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{m}{n}\left(m,n\in Z;\left(m,n\right)=1\right).\)

\(\Rightarrow nx+ny\sqrt{2013}=my+mz\sqrt{2013}\Leftrightarrow nx-my=\sqrt{2013}\left(mz-ny\right).\)

\(\Rightarrow\hept{\begin{cases}nx-my=0\\mz-ny=0\end{cases}}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2\)(vì x,y,n,m đều là các số nguyên )

Khi đó: \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                      \(=\left(x-y+z\right)\left(x+y+z\right)\)

Dễ thấy  \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên:

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)

Thử lại ta thấy x=y=z=1 thỏa mãn .