Cho hình vuống ABCD, \(M\in BC\). Kẻ AN vuông góc với AM, Ap vuông goác với MN sao cho M, N thuộc đường thẳng CD
a) CM: \(\Delta AMN\)vuông cân
b) Gọi Q là giao điểm của tia AM và DC. Chứng minh: \(\frac{1}{AM^2}\)+\(\frac{1}{AQ^2}\)không đổi khi điểm M thay đổi trên BC
#)Giải :
a) Xét \(\Delta ABM\)và \(\Delta ADN\)có :
\(\widehat{ABM}=\widehat{ADN}\left(=90^o\right)\)
\(A=A\)( T/chất hình vuông ABCD )
\(\widehat{BAM}=\widehat{DAN}\)
\(\Rightarrow\Delta ABM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow AM=AN\)( cặp cạnh tương ứng bằng nhau )
\(\Rightarrow\Delta AMN\)cân tại A
Mà \(\widehat{MAN}=90^o\)
\(\Rightarrow\Delta AMN\)vuông cân