1 thuyền đánh cá chuyển động ngược dòng nươc làm rớt 1 cái phao. Do không phát hiện kịp , thuyền tiếp tục chuyển động thêm 30 phút nữa thì mới quay lại và gặp phao tại nơi cách chỗ làm rớt 5km. Tìm vận tốc của dòng nước, biết vận tốc của thuyền đoois với nước là không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng ngược dòng 20 phút
\(=>S1=\left(vt-vn\right).\dfrac{1}{3}\left(km\right)\)(thuyền 20 phút)
\(=>S2=vn.\dfrac{1}{3}\left(km\right)\)(phao trôi 20ph)
quãng xuôi dòng
\(=>S3=\left(vt+vn\right)t1\left(km\right)\)(thuyền xuôi dòng)
\(=>S4=vn.t1\left(km\right)\)(phao chuyển động)
\(=>S3-S1=3=>\left(vt+vn\right)t1-\dfrac{\left(vt-vn\right)}{3}=3\)
\(=>S2+S4=3< =>\dfrac{vn}{3}+vn.t1=3\)
\(=>\left(vt+vn\right)t1-\dfrac{\left(vt-vn\right)}{3}=\dfrac{vn}{3}+vn.t1\)
\(< =>\)\(t1=\dfrac{1}{3}h=>\dfrac{vn}{3}+\dfrac{vn}{3}=3=>vn=4,5km/h\)
Từ lúc rơi đến lúc quay lại gặp phao là hết 30 phút.
Thời gian trôi của phao là 30p = 0,5h.
Vận tốc dòng nước bằng vận tốc phao trôi: 5 : 0,5 = 10 (km/h)
Gọi vị trí rơi phao là A
Vị trí thuyền quay lại là B
Thuyền gặp phao tại C
Gọi vận tốc thuyền là v1, vận tốc của nước là vn.Đk : v1, vn >0
Theo đề ra ta có :
\(t_{\text{phao }}=t_{\text{thuyền }}\)
\(\Rightarrow t_{AC}=t_{AB}+t_{BC}\)
\(\Rightarrow\dfrac{s_{AC}}{v_n}=\dfrac{1}{2}+\dfrac{s_{AB}}{v_1+v_n}\)
\(\Rightarrow\dfrac{5}{v_n}=\dfrac{1}{2}+\dfrac{5+\dfrac{\left(v_1-v_n\right)}{2}}{v_1+v_n}\)
\(\Rightarrow v_n=5km/h\)
Link ấy làm quá dài dòng
Giải:
- Gọi \(A\) là điểm thuyền làm rơi phao.
\(v_1\) là vận tốc của thuyền đối với nước
\(v_2\) là vận tốc của nước đối với bờ.
Trong khoảng thời gian \(t_1=30\) phút thuyền đi được:
\(s_1=\left(v_1-v_2\right).t_1\)
Trong thời gian đó phao trôi được một đoạn: \(s_2=v_2t_1\)
- Sau đó thuyền và phao cùng chuyển động trong thời gian \(\left(t\right)\) đi được quãng đường \(s_2'\) và \(s_1'\) gặp nhau tại \(C\)
Ta có:
\(s_1'=\left(v_1+v_2\right).t;s_2=v_2t\)
Theo đề bài ta có:
\(s_2+s_2'=5\) Hay \(v_2t_1+v_2t=5\left(1\right)\)
Mặt khác: \(s_1'-s_1=5\)
Hay \(\left(v_1+v_2\right).t-\left(v_1-v_2\right).t_1=5\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow t_1=t\)
Từ \(\left(1\right)\Rightarrow v_2=\dfrac{5}{2t_1}=5\left(\dfrac{km}{h}\right)\)
Vậy vận tốc của dòng nước là \(5km/h\)
Đây vào đây mà xem.
hoc24.vn/hoi-dap/question/138823.html
Gọi vận tốc nước so với bờ và nước lần lượt là v1 và v2, vận tốc dòng nước là vn. Gọi thời gian thuyền đi từ A--B là t1, đi từ B--C là t2.
Quãng đường thuyền đi trong thời gian t1 (A--B), t2 (B--C) và quãng đường phao trôi được trong thời gian t1 (A--D), t2 (D--C) là:
\(S_{AB}=\left(v_2-v_n\right)t_1\)
\(S_{BC}=\left(v_2+v_n\right)t_2\)
\(S_{AD}=v_n.t_1\)
\(S_{CD}=v_n.t_2\)
Do BC = AB+AD+DC
\(\Rightarrow\left(v_2+v_n\right)t_2=\left(v_2-v_n\right)t_1+v_n.t_1+v_n.t_2\)
Giải phương trình ta được t2 = t1 = 0,5 (h)
Do AC = AD+DC
\(\Rightarrow AC=v_n.t_1+v_n.t_2\)
Giải phương trình ta được AC = vn
Vận tốc dòng nước là 5km/h
Gọi A là điểm thuyền làm rơi phao.
v1 là vận tốc của thuyền đối với nước.
v2 là vận tốc của nước đối với bờ.
Trong khoảng thời gian t1 = 30 phút thuyền đi được:
s1 = ( v1 - v2 )t1
Trong thời gian đó phao trôi được một đoạn: s2 = v2t1
Sau đó, thuyền và phao cùng chuyển động trong thời gian (t) đi được quãng đường s'2 và s'1 gặp nhau tại C.
Ta có:
\(s'_1=\left(v_1+v_2\right)t;s_2=v_2t\)
Theo đề bài ta có:
\(s_2+s'_2=5\) hay \(v_2t_1+v_2t=5\left(1\right)\)
Mặt khác: \(s'_1-s_1=5\)
Hay \(\left(v_1+v_2\right)t-\left(v_1-v_2\right)t_1=5\left(2\right)\)
Từ (1) và (2) => t1 = t
Từ (1) => v2 = 5/2t1 = 5 (km/h)
Vậy vận tốc của nước là 5 km/h
Cho mình hỏi chỗ v2t1+v2t=5 ý . Thì từ chỗ đó mình suy ra t1=t r ý . Cần gì làm 2 nhỏ nữa bạn . Mình không hiểu chỗ đó nếu bạn nhận được mong bạn giải đáp thắc mắc