K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì p là SNT lớn hơn 3 lên p—1 và p+1 là số chẵn=» (p—1)×(p+1) chia hết cho 8(1)
vì p là số nguyên tố lớn hơn 3 lên p có dạng 3k+1 hoặc 3k+2. Tính từng trường hợp »» chia hết cho 3.kết hợp vs (1) chia hết cho 24(điều phải chứng minh)

Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => (p-1)(p+1) chia hết cho 24

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6

5 tháng 8 2016

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

Suy rea:p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

Chúc bạn học tốt Trafalgar

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

20 tháng 4 2016

Nếu P là số nguyên tố mà P+2 cũng là số nguyên tố thì P phải là con số 5.

Có P là 5 thì ta có: P+2=5+2=7 (là số nguyên tố)

Và P+1=5+1=6

Suy ra P+1 chia hết cho 6

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

14 tháng 11 2022

4 và 6

 

8 tháng 1 2017

+ Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3

Do p và p + 2 là 2 số nguyên tố > 3 => p và p + 2 không chia hết cho 3

=> p + 1 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (2)

Từ (1) và (2), do (2;3)=1 => p + 1 chia hết cho 6 (đpcm)

k mk nha mk cần điểm hỏi đáp

5 tháng 8 2016

+ Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3

Do p và p + 2 là 2 số nguyên tố > 3 => p và p + 2 không chia hết cho 3

=> p + 1 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (2)

Từ (1) và (2), do (2;3)=1 => p + 1 chia hết cho 6 (đpcm)