c) Một thiết diện đi qua đỉnh của hình nón và khoảng cách từ tâm của đáy đến mặt phẳng thiết diện là 12cm. Tính diện tích thiết diện đó ?
giúp mình lên diểm hỏi dáp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hình nón đã cho có đỉnh là S và H là tâm đường tròn đáy.
Thiết diện đi qua đỉnh S là tam giác SAC (với A và C thuộc đường tròn đáy)
Gọi M là trung điểm của AC.
Do đó, d( H; (SAC))= HI = 12
Trong tam giác vuông SHM ta có:
Trong tam giác vuông HAM ta có:
AM2 = HA2 – HM2 = 252 – 152 = 400 nên AM = 20 (cm)
Ta có:
Do đó, diện tích thiết diện SAC là:
b)-Mặt phẳng (DMN) cắt hình lập phương theo thiết diện MEDNF trong đó ME // ND, FN //DE và chia hình lập phương thành hai khối đa diện (H) và (H’), gọi phần khối lập phương chứa A, B, A’, mặt phẳng (DMN) là (H)
-Chia (H) thành các hình chóp F.DBN, D.ABFMA’ và D.A’EM.
Đáp án D.
Giả sử hình nón có đỉnh S, đáy là đường tròn tâm I bán kính r, thiết diện đi qua đỉnh là ∆ S A D cân tại S.
Gọi J là trung điểm của AB, ta có A B ⊥ I J A B ⊥ S I → A B ⊥ S I J → S A B ⊥ S I J
Trong mặt phẳng (SIJ): Kẻ I H ⊥ S J , H ∈ S J
Từ S A B ⊥ ( S I J ) ( S A B ) ∩ ( S I J ) = S J → I H ⊥ S A B → I H = d ( I ; ( S A B ) ) = 24 ( c m ) I H ⊥ S J
1 I H 2 = 1 S I 2 + 1 S J 2 → 1 I J 2 = 1 24 2 - 1 40 2 = 1 900 → I J = 30
→ S J = S I 2 + I J 2 = 50 ( c m )
A B = 2 J A = 2 r 2 - I J 2 = 2 50 2 - 30 2 = 80 ( c m )
Vậy S ∆ S A B = 1 2 S J . A B = 1 2 . 50 . 80 = 2000 ( c m 2 )
Đáp án D.
Giả sử hình nón có đỉnh S, đáy là đường tròn tâm I bán kính r, thiết diện đi qua đỉnh là ∆ SAD cân tại S.
Gọi J là trung điểm của AB, ta có
=> (SAB) ⊥ (SIJ)
Trong mặt phẳng (SIJ): Kẻ IH ⊥ (SAB) => IH = d(I;(SAB)) = 24 (cm)
Vậy= 2000 c m 2
a) Đường sinh l của hình nón là:
l = = = 5√41 (cm).
Diện tích xung quanh của hình nón là:
Sxq = πrl = 125π√41 (cm2)
b) Vnón = = (625.20π)/3 = (12500π)/3 (cm3)
c) Giả sử thiết diện cắt hình tròn đáy theo đoạn thẳng AB.
GỌi I là trung điểm AB, O là đỉnh của nón thì thiết diện là tam giác cân OAB.
Hạ HK vuông góc AI, H là tâm của đáy, thì HK vuông góc ( OAB) và theo giả thiết HK = 12 (cm)