K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

Đặt A = 2003/1.2 + 2003/2.3 + 2003/3.4 + ... + 2003/2002.2003

A = 2003 . ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2002.2003 )

A = 2003 . ( 1 - 1/2003 )

A = 2003 . 2002/2003

A = 2002

23 tháng 4 2016

Đặt A = 2003/1.2 + 2003/2.3 + 2003/3.4 + ... + 2003/2002.2003

A = 2003 . ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2002.2003 )

A = 2003 . ( 1 - 1/2003 )

A = 2003 . 2002/2003

A = 2002

21 tháng 1 2017

ko bit

9 tháng 1 2022

Ko biết

29 tháng 7 2018

vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)(do 22  > 1.2)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)(do 32>2.3)

             \(\frac{1}{4^2}< \frac{1}{3.4}\)(do 42 >3.4)

          ...

           \(\frac{1}{2002^2}< \frac{1}{2001.2002}\)(do 20022 > 2001.2002)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)(2)

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)

   \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

   \(=\frac{1}{1}-\frac{1}{2002}\) 

    \(=\frac{2002}{2002}-\frac{1}{2002}\)

     \(=\frac{2001}{2002}< 1\)(2)

Từ (1) và (2) suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)

Bài toán được chứng minh

31 tháng 3 2017

Đáp án của tớ là:

\(\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}=\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)=\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)

Vậy:\(1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)

6 tháng 3 2015

xin chòa hôm nay mình sẽ giúp bạn lam bài toán này 

ta có

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1+1/2+1/3+....+1/1001)

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1/2+1/4+1/6+....+1/2002)-(1/2+1/4+1/6+......+1/2002)

1/1002+1/1003+.....+1/2003=1+1/2+1/3+....+1/2003-1/2+1/4+1/6+....+1/2002-1/2-1/4-1/6-....-1/2002

Vậy1/1002+1/1002+.....+1/2003=1-1/2+1/3-1/4+....-2/2002-1/2003

5 tháng 8 2018

Đặt \(\sqrt{2002}=a,\sqrt{2003=b}\)

Ta có:

VT = \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel ta có:

\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\)

hay \(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}\ge\sqrt{2002}+\sqrt{2003}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b\)

\(a\ne b\)

\(\Rightarrow\)\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)(đpcm)

30 tháng 1 2018

Bạn nào trả lời bài này nhanh nhất thì add vs mk , mk sẽ tặng 1 thẻ điện thoại 50k cho 2 bạn trả lời nhanh nhất nhé!

Nhanh các bạn ơi!!!

Hứa k bùng đâu

20 tháng 7 2018

a,+5.2002

b,5.2003