Cho tam giác ABC đều nội tiếp đường tròn (O). Trên cung nhỏ AB lấy điểm M, trên dây MC lấy điểm N sao cho MB = CN.a) Chứng minh rằng tam giác AMN đều.b) Kẻ đường kính BD của đường tròn (O). Chứng minh MD là đường trung trực của đoạnthẳng AN.c) Tiếp tuyến kẻ từ D với đường tròn (O) cắt tia BA và tia MC lần lượt tại T, K. Tính số đobằng độ của tổng hai góc: ··NAT NKT+.d) Khi M di động trên cung nhỏ AB, hãy xác định vị trí của điểm M để tổng của hai đoạnthẳng MA + MB lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\hept{\begin{cases}\widehat{BMD}=\widehat{BAD}=\frac{1}{2}sđ\widebat{BD}\\\widehat{DMC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)
mà \(\widehat{BAD}=\widehat{DAC}=\frac{1}{2}\widehat{BAC}\)
=> \(\widehat{BMD}=\widehat{DMC}\)
=> MD là phân giác góc BMC
b) Ta có: \(\widehat{BMC}=2\widehat{MBE}\)( cùng bù \(\widehat{BME}\))
<=> \(2\widehat{BMD}=2\widehat{MBE}\)
=> \(\widehat{BMD}=\widehat{MBE}\left(SLT\right)\)
=> BE song song MD
=> BE song song MI
c) Ta có: \(\widehat{MCD}=\frac{\widebat{BM}+\widebat{BD}}{2}=\widehat{DKC}\)(1)
Mặt khác: \(\widehat{DIC}=\frac{\widebat{BM}+\widebat{DC}}{2}\)(2)
Từ (1),(2) => \(\widehat{DIC}=\widehat{DKC}\)( \(\widebat{BD}=\widebat{DC}\))
=> DCKI nội tiếp
Ta có: ∆ ABD = ∆ CBM (cmt)
suy ra: AD = CM
Ta có: DM = BM ( tam giác MBD đều )
mà AM = AD + DM
suy ra: MA = MC + MB
a. Do ABCM là tứ giác nội tiếp nên \(\widehat{AMx}=\widehat{ABC}\)
Lại do tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{AMB}\) (Góc nội tiếp cùng chắn cung AB)
Vậy nên \(\widehat{AMB}=\widehat{AMx}\) hay MA là phân giác góc \(\widehat{BMx}.\)
b. Do tam giác ABC cân tại A nên AI là phân giác góc BAC. Vậy thì cung BI = cung CI hay góc \(\widehat{BMI}=\widehat{IKC}\)
Từ đó suy ra \(\widehat{DMI}=\widehat{IKD}\) (Cùng phụ với hai góc trên)
Lại có do MD = MC \(\Rightarrow\widehat{MDK}=\widehat{MCK}=\widehat{MIK}\)
Tứ giác DMIK có các góc đối bằng nhau nên nó là hình bình hành.
c. Do MA là phân giác góc BMx nên MA thuộc đường phân giác góc DMC.
Lại có MD = MC nên MA chính là đường trung trực của DC.
Vậy thì DA = AC, hay D luôn thuộc đường tròn tâm A, bán kính AC.
a ) Ta có BM=MD (gt)
=> ΔΔMBD cân tại M
Mặt khác AMBˆ=ACBˆAMB^=ACB^ ( Hai góc nội tiếp chắn cung AB)
Mà ACBˆ=600ACB^=600( tam giác ABC đều)
Suy ra AMBˆ=600hayDMBˆ=600AMB^=600hayDMB^=600
Vậy ΔMBDΔMBD đều
b) Ta có ΔMBDΔMBD đều ( CMT)
Suy ra : DMBˆ=DBCˆ+CBMˆ=600DMB^=DBC^+CBM^=600(1)
Lại có : tam giác ABC đều (gt)
Suy ra : ABCˆ=ABDˆ+DBCˆ=600ABC^=ABD^+DBC^=600(2)
Từ (1) và (2) suy ra ABDˆ=MBCˆABD^=MBC^
Xét hai tam giác ABD và CBM ta có
BC=BA (gt)
ABDˆ=MBCˆ(cmt)ABD^=MBC^(cmt)
BD=BM( tam giác MBD đều)
=> ΔABD=ΔCBM(c.g.c)ΔABD=ΔCBM(c.g.c)
c)ΔABD=ΔCBM(cmt)ΔABD=ΔCBM(cmt)
SUy ra AD=CM
mà AM=AD+DM
SUy ra MA=MC+MD