K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Hỏi đáp Toán

10 tháng 8 2017

Ta có :

 Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)

=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)

=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)

=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)

           =\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)

           =\(4-2\sqrt{4-3}\)

           =\(4-2\)

           =\(2\)

=>\(A=\sqrt{2}\)

Ta có: \(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)

\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}-\frac{\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-\left(y^2-x^2\right)}{\sqrt{xy}\left(y-x\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x+y}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\frac{x+y}{\sqrt{y}+\sqrt{x}}\cdot\frac{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}{x+y}\)

\(=\sqrt{y}-\sqrt{x}\)

6 tháng 9 2017

ko hiện đc công thức

6 tháng 9 2017

Chắc là mình ghi sai

11 tháng 7 2017

\(=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right):\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)