a) chứng minh 5+5^2+5^3+5^4+...+5^96 chia hết cho 96
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=5+5^2+5^3+....+5^96=
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)=
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
b)
B=5+52+...+596
Do 5 mũ bao niêu tận cùng là 5
=>tận cùng của B là chữ số tận cùng của tổng các chữ số tận cùng của các số hạng của B
Số số hạng của B là:96-1+1=96(số hạng)
=>Tổng các chữ số tận cùng của các số hạng của B là:5x96=480
=>chữ số tận cùng của B là 0
Vậy chữ số tận cùng của B là 0
S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126
Xin lỗi nha bạn , mình viết dấu mũ không được
không chia hết cho 96 được !
Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:
S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)
=(5+52+53+54+55+56)(1+56+...+590)
Ta có : 5+52+53+54+55+56
=5(1+53)+52(1+53)+53(1+53)
=126(5+52+53) chia het 126
Vay : S chia het 126