giải hệ phương trình
\(\hept{\begin{cases}xy+2x+3y=10\\\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(y+1\right)\left(y+3\right)}=\frac{2}{15}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)
Đặt \(x+2=a,y+1=b\)
Ta có hệ mới
\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)
Lấy (1).(2)
=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)
Nếu a,b khác dấu
=> \(VT\le-4\)(loại)
Nếu a,b cùng dấu
=> \(VT\ge4\)
Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5
=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)
Vậy x=1,y=2 hoặc x=-7,y=-6
bn nào giải thick cho mk đoạn cùng dấu và trái dấu với
tại sao cùng dấu lại >=4
trái dấu lại<=4
và làm thế nào để tính a,b
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
b, \(x^3+3x^2y-4y^3+x-y=0\)
\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)
\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó pt (2) của hệ trở thành:
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)
sử dụng bất đẳng thức đối với pt2 he 1
pt 2<=>\(xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=4\)
áp dụng bdt cô si ta dễ dàng chứng minh được VT>=4. dau = xay ra <=>x=y=1
nhưng x,y có không âm đâu mà được phép áp dụng cosi