Một phòng họp có 300 ghế ngồi nhưng phải xếp cho 357 người đến dự họp, do đó ban tổ chức đã kê thêm 1 hàng ghế và mỗi hàng ghế phải xếp nhiều hơn quy định 2 ghế mới đủ chỗ ngồi .Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
gọi số hàng ghế ban đầu là x ( hàng )( đk x>0)
\(\Rightarrow\)số hàng ghế sau khi thêm một hàng là x+1 ( hàng)
số ghế trên một hàng ban đầu là \(\frac{300}{x}\)(ghế)
số ghế trên một hàng sau khi thêm hai ghế và một hàng là \(\frac{357}{x+1}\)(ghế)
ta có phương trình : \(\frac{357}{x+1}\)=\(\frac{300}{x}\)+2
\(\Rightarrow\)357x =300x+300 +2x\(^2\)+2
\(\Leftrightarrow\)-2x\(^2\)+57x-302=0
\(\Leftrightarrow\)2x\(^2\)-57x+302=0
giải phương trình bậc hai
đối chiếu điều kiện
kết luận
Gọi số hàng ghế và số ghế mỗi hàng ban đầu lần lượt là x và y (điều kiện bạn tự ghi)
\(\Rightarrow xy=300\)
Sau khi kê thêm, số ghế khi đó là: \(\left(x+1\right)\left(y+2\right)\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=357\)
Theo bài ra ta có hệ:
\(\left\{{}\begin{matrix}xy=300\\\left(x+1\right)\left(y+2\right)=357\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=300\\2x+y=55\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy=300\\y=55-2x\end{matrix}\right.\)
\(\Rightarrow x\left(55-2x\right)=300\)
\(\Leftrightarrow-2x^2+55x-300=0\Rightarrow\left[{}\begin{matrix}x=20\\x=\frac{15}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow y=15\)
Vậy...
số ghế1 hàng số ghế 1 dãy tổng số ghế
dự tính X \(\dfrac{360}{x}\) 360
thực tế X+1 \(\left(\dfrac{360}{X}\right)+1\) 400
gọi số ghế của 1 hàng là x (dự tính)
=> số ghế của 1 dãy là \(\dfrac{360}{x}\)
thêm 1 hàng theo thực tế X+1
mỗi hàng thêm 1 ghế ( thêm 1 dãy) \(\left(\dfrac{360}{X}\right)+1\)
tổng số ghế thực tế là 400 nên ta có
\(\left(x+1\right).\left(\left(\dfrac{360}{X}\right)+1\right)=400\)
=> x=24
vậy số ghế của 1 hàng và 1 dãy ban đầu lần lượt là 24 và 15
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)
\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)
\(\Delta'=\left(-36\right)^2-720=576\)
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
Gọi số hàng ghế lúc đầu là x (hàng) ĐK x > 0 và x thuộc N*
Số ghế trong mỗi hàng lúc đầu là 360/x (ghế)
Số hàng sau khi thêm là x+1
Số ghế trong mỗi hàng sau khi thêm là 360/x + 1
Tổng số chỗ ngồi sau thi thêm là 400 nên ta có phương trình:
(x+1).(360/x + 1) = 400
<=> x^2 - 39x + 360 = 0
∆= 81 nên x1=24; x2 = 15 cả hai giá trị này đều thỏa mãn ĐK.
Nếu số hàng ghế lúc đầu là 24 hàng thì số ghế trong mỗi hàng là 360:24 = 15 ghế
Nếu số hàng ghế lúc đầu là 15 hàng thì số ghế trong mỗi hàng là 360:15 = 24 ghế
Số ghế trong mỗi dãy lúc đầu là 360/x (ghế)
Số dãy sau khi thêm là x+1
Số ghế trong mỗi dãy sau khi thêm là 360/x + 1
Tổng số chỗ ngồi sau thi thêm là 400 nên ta có phương trình:
(x+1).(360/x + 1) = 400
<=> x^2 - 39x + 360 = 0
∆= 81 nên x1=24; x2 = 15 cả hai giá trị này đều thỏa mãn ĐK.
Nếu số dãy ghế lúc đầu là 24 hàng thì số ghế trong mỗi dãy là 360:24 = 15 ghế
Nếu số dãy ghế lúc đầu là 15 hàng thì số ghế trong mỗi dãy là 360:15 = 24 ghế
mỗi hàng ghế có số ghế là x
có số hàng ghế là \(\frac{300}{x}\)
lúc sau mỗi hàng có số ghế là x+2
có số hàng ghế là \(\frac{300}{x}+1\)ta có pt:
\(\frac{300}{x}+1=\frac{357}{x+2}\)
\(300x+600+x^2+2x=357x\)
\(x^2-55x+600=0\)
\(\Delta= \left(-55\right)^2-\left(4.1.600\right)=625\)
\(\sqrt{\Delta}=25\)
\(x_1=\frac{55+25}{2}=35\left(KTM\right)\)
\(x_2=\frac{55-25}{2}=15\left(TM\right)\)
có số hàng ghế \(\frac{300}{15}=20\)( Hàng ghế )