K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-y^2-2y-1\)

\(=x^2-\left(y+1\right)^2\)

\(=\left(x-y-1\right)\left(x+y+1\right)\)

\(=100\cdot\left(93-6-1\right)\)

=8600

7 tháng 10 2021

giúp mik gấp với

29 tháng 12 2021

=(x-y-1)(x+y+1)

=100x86=8600

9 tháng 7 2018

\(Q=x^2-y^2-2y-1\)

\(\Rightarrow Q=x^2-\left(y^2+2y+1\right)\)

\(\Rightarrow Q=x^2-\left(y+1\right)^2\)

\(\Rightarrow Q=\left(x-y-1\right)\left(x+y+1\right)\)

Thay \(x=93;y=6\)vào \(Q\)ta được : 

\(Q=\left(93-6-1\right)\left(93+6+1\right)\)

\(\Rightarrow Q=86.100\)

\(\Rightarrow Q=8600\)

Vậy \(Q=8600\)

9 tháng 7 2018

P/s : Theo mình thì đây là cách nhanh nhất >: 

23 tháng 11 2020

a) x2−y2−2y−1x2−y2−2y−1 tại x=93x=93 và y=6y=6

Ta có : x2−y2−2y−1=x2−(y2+2y+1)x2−y2−2y−1=x2−(y2+2y+1)

=x2−(y+1)2=x2−(y+1)2

=(x−y−1)(x+y+1)=(x−y−1)(x+y+1)

Khi x=93x=93 và y=6y=6 , ta có :

(93−6−1)(93+6+1)(93−6−1)(93+6+1) =86.100=86.100

=8600

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

20 tháng 4 2017

Bài giải:

a) x2 + 12x+ 116 tại x = 49,75

Ta có: x2 + 12x+ 116 = x2 + 2 . x . 14 + (14)2= (x+14)2

Với x = 49,75: (49,75+14)2= (49,75 + 0,25)2 = 502 = 2500

b) x2 – y2 – 2y – 1 tại x = 93 và y = 6

Ta có: x2 – y2 – 2y – 1 = x2 – (y2 + 2y + 1)

= x2 - (y + 1)2 = (x - y - 1)(x + y + 1)

Với x = 93, y = 6: (93 - 6 - 1)(93 + 6 + 1) = 86 . 100 = 8600

16 tháng 10 2017

a) \(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\) tại \(x = 49,75\)

Ta có : \(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\) \(=\left(x^2+2.x.\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right)\)

\(=\left(x+\dfrac{1}{4}\right)^2\)

Khi \(x = 49,75\) ,ta có :

\(\left(49,75+\dfrac{1}{4}\right)^2\) \(=\left(\dfrac{200}{4}\right)^2\)

\(= 50^2\)

\(= 2500\)

b) \(x^2 - y^2 - 2y - 1\) tại \(x = 93\)\(y = 6\)

Ta có : \(x^2 - y^2 - 2y - 1 = x^2 - (y^2 + 2y +1)\)

\(= x^2 - (y + 1)^2\)

\(= (x- y - 1) ( x+ y +1)\)

Khi \(x = 93\)\(y = 6\) , ta có :

\((93 - 6 - 1) ( 93 + 6 + 1)\) \(= 86 . 100\)

\(= 8600\)

20 tháng 3 2022

\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)

Bậc:3

Thay x=-1, y=1 vào B ta có:

\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)

a: C=A-B

\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)

\(=x^3+3x^2y+3xy^2+y^3\)

D=A+B

\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)

\(=9x^3-9x^2y+5xy^2+y^3\)

bậc của C là 3

bậc của D là 3

b: Thay x=0 và y=-2 vào D, ta được:

\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)

\(=0-0+0-8=-8\)

c: Thay x=-1 và y=-1 vào C, ta được:

\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)

=-8