tìm các giá trị của tham số m để hpt có 2 no pb (x1;y1), (x2;y2) thỏa mãn x1<x2<2 của hệ sau:
\(\left\{{}\begin{matrix}x-y=-1\\\left(m-1\right)x^2+y^2+x-2y+2m-3=0\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 13 4
⇔ a ≠ 0 Δ ≥ 0 − b a = 13 4 ⇔ m ≠ 0 m 2 − 3 3 − 4 m 2 ≥ 0 − m 2 − 3 m = 13 4
⇔ m ≠ 0 m 2 − 3 − 2 m m 2 − 3 + 2 m ≥ 0 4 m 2 + 13 m − 12 = 0
⇔ m ≠ 0 m + 1 m − 3 m − 1 m + 3 ≥ 0 m = 3 4 ; m = − 4
⇔ m ≠ 0 m ∈ − ∞ ; − 3 ∪ − 1 ; 1 ∪ 3 ; + ∞ m = 3 4 ; m = − 4 ⇔ m = 3 4 m = − 4
Vậy tổng bình phương các giá trị của m là: 265 16
Đáp án cần chọn là: A
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
a: Để phương trình có hai nghiệm trái dấu thì
m^2+2m+3<0
=>m^2+2m+1+2<0
=>(m+1)^2+2<0(vô lý)
b:
Δ=(2m+3)^2-4(m^2+2m+3)
=4m^2+12m+9-4m^2-8m-12
=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
4x1x2=(x1+x2)^2-2(x1+x2)+5
=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5
=>4m^2+8m+12=4m^2+12m+9-4m-6+5
=>8m+12=8m-1
=>12=-1(vô lý)
\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
Phương trình có hai nghiệm phân biệt :
\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)
Theo vi ét :
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)
Vậy \(m=2\)
Δ=(2m-2)^2-4(-2m+5)
=4m^2-8m+4+8m-20=4m^2-16
Để PT có hai nghiệm phân biệt thì 4m^2-16>0
=>m>2 hoặc m<-2
x1-x2=-2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(2m-2)^2-4(-2m+5)=4
=>4m^2-8m+4+8m-20=4
=>4m^2=20
=>m^2=5
=>m=căn 5 hoặc m=-căn 5
Từ pt trên suy ra \(y=x+1\) thay xuông dưới:
\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)
\(\Leftrightarrow mx^2+x+2m-4=0\)
Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)
Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)