Cho tam giác ABC nội tiếp đường tròn (O), góc A < 90°. Các đường phân giác trong cắt nhau tại I. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn tại M, N, P. Chứng minh:
a) Tam giác NIC cân tại N
b) I là trực tâm tam giác MNP
c) Gọi E là giao điểm của MN và AC, F là giao điểm của PM và AB. Chứng minh 3 điểm E, I, F thẳng hàng
d) Gọi K là trung điểm BC, giả sử BI ⊥ IK, BI = 2IK. Tính góc A của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De chung minh M la tam duong tron bang tiep goc C cua tam giac ABC
\(\Rightarrow\widehat{MAI}=\widehat{MBI}=90^0\) => tu giac MAIN noi tiep
=> \(C'I.C'M=C'B.C'A\left(1\right)\)
Mat khac xet (O) ta cung co \(C'B.C'A=C'N.C'E\left(2\right)\)
Tu (1) va (2) suy ra \(C'I.C'M=C'E.C'N\)
suy ra tu giac MEIN noi tiep (*)
chung minh tuong tu cung co tu giac EINK noi tiep (**)
tu (*) va(**) ta co dpcm
Gọi giao điểm của hai tia MA và BI là J.
Ta thấy I là tâm nội tiếp \(\Delta\)ABC, CI cắt (ABC) tại M. Suy ra M là điểm chính giữa cung AB không chứa C.
Từ đó ta có biến đổi góc ^AJB = 1800 - ^AMB - ^IBM = (^ACB - ^ABC)/2 = ^AKB
Suy ra tứ giác ABKJ nội tiếp. Mà BJ là phân giác góc ABK nên (JA = (JK hay JA = JK
Đồng thời IM // JK (Vì ^JKB = ^BAM = ^BCM)
Mặt khác ^MAI = ^MIA = (^BAC + ^ACB)/2 nên MI = MA. Áp dụng ĐL Thales ta có:
\(\frac{MI}{KJ}=\frac{AM}{AJ}=\frac{NI}{NJ}\). Kết hợp với ^MIN = ^KJN (IM // JK) suy ra \(\Delta\)MIN ~ \(\Delta\)KJN (c.g.c)
Suy ra ^MNI = ^KNJ. Lại có I,N,J thẳng hàng, dẫn đến M,N,K thẳng hàng (đpcm).