K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Áp dụng côsi cho 3 số ta có 

\(2xy+2xy+\left(x^2+y^2\right)\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\) 

=> \(4+2xy\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\)

Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=2\)

=> \(3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\le6\)

=> \(x^2y^2\left(x^2+y^2\right)\le2\)( Điều phải chứng minh)

Dấu bằng xảy ra khi x=y=1

10 tháng 5 2019

Cách khác nè

\(x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.\left(x^2+y^2\right)2xy\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(x+y\right)^4}{4}=\frac{1}{2}.\frac{4}{4}.\frac{16}{4}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+y=2\end{cases}\Leftrightarrow x=y=1}\) 

:))

Ta có:  \(2xy\left(x^2+y^2\right)\le\frac{\left(x+y\right)^4}{4}=\frac{16}{4}=4\)

\(\Rightarrow xy\left(x^2+y^2\right)\le2\left(1\right)\)

Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=1\left(2\right)\)

Nhân từng vế (1) và (2)=> đpcm

Dấu "=" xảy ra khi x=y=1

9 tháng 2 2020

sao \(2xy\left(x^2+y^2\right)\le\frac{\left(x+y\right)^4}{4}\) vậy ???

4 tháng 6 2016

Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab 

Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 

ta có: 1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4 

Áp dụng bđt 4xy ≤ (x + y)² 

ta có: 1/2ab = 2/4ab ≥ 2/(a + b)² = 2 => VT ≥ 4 + 2 = 6 

Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½ 

4 tháng 6 2016

Nhók Silver Bullet: đúng là "bản sao" của VICTOR_Nobita Kun

3 tháng 5 2017

mình cũng muốn lắm nhưng mình mới lớp 7

14 tháng 8 2016

Áp dụng BĐT Cô si ta có:

\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)

=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)\(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)

<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)

Do đó:

\(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)

<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)

<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)

<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)

Dấu = khi x=y=z=1.

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT AM-GM ta có:

$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$

$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$

$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$

Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$

$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

20 tháng 9 2019

\(\left(x+y\right)^2+\frac{x+y}{2}=\left(x+y\right)\left(x+\frac{1}{4}+y+\frac{1}{4}\right)\ge2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\ge2x\sqrt{y}+2y\sqrt{x}\)

Dau '=' xay ra khi \(x=y=\frac{1}{4}\)

NV
19 tháng 1 2024

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)