Cho x,y,x là các số thực thỏa mãn điều kiện \(xy+2\left(yz+xz\right)=5\). Tìm giá trị nhỏ nhất của biểu thức \(S=3\left(x^2+y^2\right)+4z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ thế này ạ
xy + 2(yz + xz) =5 => xy + 2yz + 2xz =5
Mình áp dụng bất đẳng thức này nhé :)
Ta có: \(\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\forall x,y\)
\(\Rightarrow\frac{1}{2}\left(x^2+y^2\right)\ge xy\forall x,y\)(1)
Chứng minh tương tự ta được \(y^2+z^2\ge2yz\forall y,z\)(2)
\(x^2+z^2\ge2xz\forall x,z\)(3)
Cộng vế (1) (2) (3) ta được \(\frac{1}{2}\left(x^2+y^2\right)+y^2+z^2+x^2+z^2\ge xy+2yz+2xz\forall x,y,z\)
\(\Rightarrow\frac{1}{2}x^2+\frac{1}{2}y^2+x^2+y^2+z^2+z^2\)\(\ge5\)\(\forall x,y,z\)
\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+2z^2\ge5\forall x,y,z\)
nhân cả 2 vế với 2 nè
\(\Rightarrow3x^2+3y^2+4z^2\ge10\forall x,y,z\)
\(\Rightarrow3\left(x^2+y^2\right)+4z^2\ge10\forall x,y,z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\y=z;x=z\\xy+2\left(yz+xz\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2+2.\left(x^2+x^2\right)=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=z\\5x^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=z\\x^2=1\end{cases}\Leftrightarrow}}\)x=y=z = 1 hoăc
Vậy giá trị nhỏ nhất của biểu thức là 10 tại x=y=z=1;-1
Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:
\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)
(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:
\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:
\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)
\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)
Vậy...
P/s: check xem em có tính sai chỗ nào không:v
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
\(S=3\left(x^2+y^2\right)+4z^2\)
\(=\left(x^2+y^2\right)+2\left[\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]\)
\(\ge2xy+2\left(2xy+2xz\right)=2\left[xy+2\left(xy+xz\right)\right]=10\)
Dấu "=" xảy ra khi x=y=z=1