cho đa thức A(x) = (x-2).(x-1). hãy xác định hệ số a,b của đa thức B(x) = 2x mũ 3 + ax mũ 2 + bx + 4 biết rằng nghiệm của đa thức A(x) cũng là nghiệm của đa thức B(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)
\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)
\(P=-\frac{2}{5}x^5y^7\)
Hệ số là \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)
Bậc của đơn thức là 12
b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :
\(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)
\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)
\(\Leftrightarrow-5+5=0\)
\(\Leftrightarrow0=0\)(TM)
Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)
Thay \(x=-1\)vào đơn thức M(x), ta được :
\(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)
\(\Leftrightarrow2+7+5=0\)
\(\Leftrightarrow14=0\)(KTM)
Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1
=>2 và 1 cũng là nghiệm của B(x)
<=>B(1)=0 và B(2)=0
<=>2+a+b+4=0 và 16+4a+2b+4=0
<=>a+b=-6 và 2(2a+b)=-20
<=>a+b=-6 và 2a+b=-10
Suy ra:a=-4 và b=-2