tính
\(\frac{-20}{21}.\frac{22}{35}+\frac{-20}{21}.\frac{13}{35}+\frac{-22}{21}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có :
\(\frac{x+3}{20}+\frac{x-15}{21}+\frac{x-35}{22}=66\)
\(\Rightarrow\left(\frac{x}{20}+\frac{3}{20}\right)+\left(\frac{x}{21}-\frac{15}{21}\right)+\left(\frac{x}{22}-\frac{35}{22}\right)=66\)
\(\Rightarrow\frac{x}{20}+\frac{3}{20}+\frac{x}{21}-\frac{5}{7}+\frac{x}{22}-\frac{35}{22}=66\)
\(\Rightarrow\left(\frac{x}{20}+\frac{x}{21}+\frac{x}{22}\right)+\left(\frac{3}{20}-\frac{5}{7}-\frac{35}{22}\right)=66\)
\(\Rightarrow x.\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}\right)+\frac{-3319}{1540}=66\)
\(\Rightarrow x.\frac{661}{4620}=66-\frac{-3319}{1540}\)
Tới đây lm đc r chứ nhưng mà hình như Akira Nishihiko , bn viết đề sai hay sao á?
Bài làm
x = \(\frac{20}{21}+\frac{21}{22}+\frac{22}{23}+\frac{23}{20}\)
x = 1 + 1 + 1 + 1 + \((\)\(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)
Ta thấy 0 < \(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\)
\(\Rightarrow\) 1 + 1 + 1 + 1 + \((\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)> 4
\(\Rightarrow\)x > 4
a)
13/36 + 17/45 + -23/20
= 133/180 + -23/20
= -37/90
b)
18/35 + -11/21 + -23/20
= -1/105 + -23/20
= -487/420
\(\frac{13}{21}\)+ \(\frac{8}{21}\) : \(\frac{16}{21}\)
= \(\frac{13}{21}\)+ \(\left(\frac{8}{21}:\frac{16}{21}\right)\)= \(\frac{13}{21}\)+ \(\frac{1}{2}\)
= \(\frac{47}{42}\)
\(\frac{36}{35}\): \(\frac{8}{3}\)- \(\frac{36}{35}\): \(\frac{6}{11}\)
= \(\frac{27}{70}\)- \(\frac{66}{35}\)= \(-\frac{3}{2}\)
=\(\frac{-20}{21}.\left(\frac{22}{35}+\frac{13}{35}\right)+\frac{-22}{21}\)
=\(\frac{-20}{21}.\left(\frac{35}{35}\right)+\frac{-22}{21}\)
=\(\frac{-20}{21}+\frac{-22}{21}\)
=\(\frac{-42}{21}\)=-2