Cho a, b, c > 0. Chứng minh rằng: \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)
Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)
Cộng vế với vế:
\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)
\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)
\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)
\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Dấu "=" xảy ra khi \(a=b=c\)
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)≥\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Cho \(a=b=c\)
\(\Rightarrow2\left(\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\right)\ge1+\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\)
\(\Leftrightarrow2\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)
\(\Leftrightarrow2\ge2\) ( Đúng)
\(\Rightarrow2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)