Cho 2 so thuc x , y thoa man x^2 + 4y^2 = 8
Tim max cua M=y ( 2 x - 3 y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
Áp dụng \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
Ta có \(P=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\)
\(\Rightarrow P=1-3x^2y^2\ge1-3\dfrac{\left(x^2+y^2\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow P_{min}=\dfrac{1}{4}\) khi \(x^2=y^2=\dfrac{1}{2}\)
\(P=\frac{xy}{x+y+2}=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2\left(x+y+2\right)}=\frac{\left(x+y\right)^2-4}{2\left(x+y+2\right)}\)
\(=\frac{\left(x+y+2\right)\left(x+y-2\right)}{2\left(x+y+2\right)}=\frac{x+y-2}{2}\)
mặt khác ta có :
\(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2\cdot4}=2\sqrt{2}\)
\(P\le\frac{2\sqrt{2}-2}{2}=\sqrt{2}-1\)
dấu băng xảy ra khi \(x=y=\sqrt{2}\)
Bạn kham khảo tại link:
tìm Min ( x^2 + y^2 ) / xy đk x>= 2y; x,y dương? | Yahoo Hỏi & Đáp
Tìm Min:
\(x=x^2+y^2-y\)
\(\Rightarrow B=\left(x^2+y^2-y\right)-y=x^2+\left(y^2-2y+1\right)-1=x^2+\left(y-1\right)^2-1\ge-1\)
Tìm Max:
\(y=x^2+y^2-x\)
\(\Rightarrow B=x-\left(x^2+y^2-x\right)=-y^2-\left(x^2-2x+1\right)+1=-y^2-\left(x-1\right)^2+1\le1\)
tick mình làm cho sợ bạn lừa đảo