K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2023

Điều kiện: \(y\ge0\)

pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)

Thay vào pt thứ hai của hệ, ta được  \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)

\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\)         \(\left(x\ge3\right)\)

\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)

\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)

\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)

\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)

Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)

\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)

\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)

Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.

NV
22 tháng 7 2021

\(2x^2-\left(3y-3\right)x+y^2-2y+1=0\)

\(\Delta=\left(3y-3\right)^2-8\left(y^2-1y+1\right)=\left(y-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3y-3+y-1}{4}\\x=\dfrac{3y-3-y+1}{4}\end{matrix}\right.\)

\(\Rightarrow...\)

 

18 tháng 3 2023

1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)

 

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bạn tham khảo tại link sau:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

26 tháng 9 2018

Ta có: \(2x^3-3x^2-3xy^2-y^3+1=0\)

\(\left(2x^3-2x^2y-xy^2\right)+\left(2x^2y-2xy^2-y^3\right)-3x^2+1=0\)

\(x\left(2x^2-2xy-y^2\right)+y\left(2x^2-2xy-y^2\right)-3x^2+1=0\)

\(2x+2y-3x^2+1=0\)

\(y=3x^2-2x-1\)

Thế y vào \(2x^2-2xy-y^2=2y\) sau đó tìm x

27 tháng 9 2018

nhầm xíu :) \(y=\dfrac{3x^2-2x-1}{2}\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Lấy PT(1) trừ đi PT(2) ta thu được:

$x^2+xy-x+y-2y^2=0$

$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$

$\Leftrightarrow (x-y)(x+2y-1)=0$

$\Rightarrow x-y=0$ hoặc $x+2y-1=0$

Nếu $x-y=0\Rightarrow x=y$

Thay vào PT(1): $2y^2+3y^2+2y+y=0$

$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$

$y=0$ thì $x=0$

$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$

Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):

$2x^2+2x(1-x)+(1-x)^2+6x=0$

$\Leftrightarrow x^2+6x+1=0$

$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$

Vậy.......

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Lấy PT(1) trừ đi PT(2) ta thu được:

$x^2+xy-x+y-2y^2=0$

$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$

$\Leftrightarrow (x-y)(x+2y-1)=0$

$\Rightarrow x-y=0$ hoặc $x+2y-1=0$

Nếu $x-y=0\Rightarrow x=y$

Thay vào PT(1): $2y^2+3y^2+2y+y=0$

$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$

$y=0$ thì $x=0$

$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$

Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):

$2x^2+2x(1-x)+(1-x)^2+6x=0$

$\Leftrightarrow x^2+6x+1=0$

$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$

Vậy.......

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)