K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Bài 3

\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(=1+\frac{5}{n+1}\)

Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)

Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=-1\Rightarrow n=-2\)

\(n+1=5\Rightarrow n=4\)

\(n+1=-5\Rightarrow n=-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)

Bài 2:

\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)

14 tháng 1 2018

1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng

Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]

A= (-1)+(-1)+.... +(-1)

A= (-1).50=(-50)

2,A=(1-2)+(3-4)+.....+(2015-2016)

A=(-1)+(-1)+....+(-1)

A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)

A=(-1).1008=(-1008)

14 tháng 1 2018

\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)

\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)

\(A=2500-2550=-50\)

Đúng ko ta lâu rồi ko làm.

\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

Bài 1 : 

a) 40/49 > 15/21

b) 22/49 > 3/8

c) 25/46 < 12/18

28 tháng 3 2019

Câu 1

a) A=2018!.(2019 - 1 -2018)

=2018!.0

= 0

vậy A= 0

b)\(B=\left(1-\frac{1}{9}+1-\frac{2}{10}+1+\frac{3}{11}+...+1-\frac{150}{158}\right):\left(\frac{1}{4}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{158}\right)\right)\)

\(=\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)

\(=8.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)

\(=8:\frac{1}{4}\)

=32

Vậy B= 32

12 tháng 5 2020

Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)

Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)

Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)

\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)

hay \(10A>10B\)\(\Rightarrow A>B\)

Vậy \(A>B\)

12 tháng 5 2020

Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)

Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)

Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)

\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

Làm khác bạn kia 1 xíu à

11 tháng 4 2018

dễ mà bạn

A=10x10+10/ 10x10x10+10

A=110/1010

a=11/101

b=10x10-10/10x10x10-10

b=90/990

b=11/110

vậy a=11/101

       b=90/990

bn tự so sánh nhé ^-^

mik mỏi tay quá ko đánh đc nữa bọn mik bằng tuổi đó

câu này mik học trên lớp rùi

21 tháng 1 2018

S1 = 1-2+3-4+....+2017-2018

     = (-1)+(-1)+....+(-1)

     = (-1) x 1009

     =   -1009

22 tháng 1 2018

S3=2019 nha, mình ko kip viết cách giai

14 tháng 8 2017

Bài 1 :

a, Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) \(\left(1\right)\)

\(ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

b) \(\dfrac{-1}{3}=\dfrac{-16}{48}< \dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}< \dfrac{-12}{48}=\dfrac{-1}{4}\)

14 tháng 8 2017

Ta thấy :

\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)

Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}\) ta có :

\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\)

\(\Leftrightarrow B>A\)