K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

Gọi G là trung điểm AH, I là trung điểm EF, MN là đtb tg ABC

Dễ thấy NG//BC;MG//BC nên M,N,G thẳng hàng

Xét tg AEF và tg HEF có AI;HI là trung tuyến ứng vs ch EF nên \(AI=HI=\dfrac{1}{2}EF\)

Do đó tg AIH cân tại I

Mà IG là trung tuyến (G là trung điểm AH) nên IG là đg cao hay \(IG\perp AH\left(1\right)\)

Xét tg AHB vuông tại H có HM là trung tuyến ứng ch AB nên \(AM=HM=\dfrac{1}{2}AB\)

Do đó tg AHM cân tại M

Mà MG là trung tuyến (G là trung điểm AH) nên MG là đg cao hay \(MG\perp AH\left(1\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow MG//GI\)

Từ đó ta được M;G;I thẳng hàng

Do đó I;M;N thẳng hàng

Vậy trung điểm EF là I nằm trên đt cố định là đường trung bình MN của tg ABC

 

21 tháng 9 2018

Bạn vẽ hình lên đi, rồi mình giải cho

21 tháng 9 2018

Bạn kham khảo bài của bạn vũ tiền châu tại link:

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

22 tháng 11 2017

Chứng minh được ADME là hình bình hành Þ I là trung điểm của AM. Tương tự 2A. I thuộc đường trung bình của D ABC (đường thẳng đi qua trung điểm của AB và AC)

16 tháng 12 2018

a) E ∈ AB mà AB ⊂ (ABC)

⇒ E ∈ (ABC)

F ∈ AC mà AC ⊂ (ABC)

⇒ F ∈ (ABC)

Đường thẳng EF có hai điểm E, F cùng thuộc mp(ABC) nên theo tính chất 3 thì EF ⊂ (ABC).

b) I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD) (1)

I ∈ EF mà EF ⊂ (DEF) nên I ∈ (DEF) (2)

Từ (1) và (2) suy ra I là điểm chung của hai mặt phẳng (BCD) và (DEF).