Giải phương trình: x^2-7 căn 7x+5=5
Bài này rất hay và khó các bạn giúp mình mai thi rồi!1!!!!!!1!111111!1!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(3x-7\right)\left(x+5\right)=\left(5+x\right)\left(3-2x\right)\)
\(\Leftrightarrow\left(3x-7\right)\left(x+5\right)-\left(x+5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-7-3+2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\5x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
\(b,\dfrac{-x+3}{2}=\dfrac{x-2}{3}\left(MSC=6\right)\)
Suy ra :
\(3\left(-x+3\right)=2\left(x-2\right)\)
\(\Leftrightarrow-3x+9-2x+4=0\)
\(\Leftrightarrow-5x+13=0\)
\(\Leftrightarrow x=\dfrac{13}{5}\)
\(c,\dfrac{x-1}{x-2}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)\(\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)+5\left(x-2\right)-12-x^2+4}{x^2-4}=0\)
\(\Leftrightarrow x^2+2x-x-2+5x-10-12-x^2+4=0\)
\(\Leftrightarrow6x-20=0\)
\(\Leftrightarrow x=\dfrac{10}{3}\)\(\left(n\right)\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
Điều kiện x \(\ge\frac{1}{4}\)
Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))
=> x = a2 + \(\frac{1}{4}\)
=> PT <=> 2a2 + \(\frac{1}{2}\)+ \(\sqrt{a^2+\frac{1}{4}+a}\)= 2
<=> \(\sqrt{a^2+\frac{1}{4}+a}\)= \(\frac{3}{2}-2a\)
<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2
<=> 4a4 - 7a2 - a + 2 = 0
<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0
<=> a = 0,5
<=> x = 0,5
ĐKXĐ: \(x^2-4x+1\ge0\)
\(2x+2+2\sqrt{x^2-4x+1}=6\sqrt{x}\)
\(\Leftrightarrow2x+2-5\sqrt{x}+2\sqrt{x^2-4x+1}-\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{4x^2-17x+4}{2x+2+5\sqrt{x}}+\dfrac{4x^2-17x+4}{2\sqrt{x^2-4x+1}+\sqrt{x}}=0\)
\(\Leftrightarrow\left(4x^2-17x+4\right)\left(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2-4x+1}+\sqrt{x}}\right)=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
\(\Leftrightarrow...\)
1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)
Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c
=> a+b+c=0=> a^3+b^3+c^3=3abc=0
=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0
=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0
tìm được x=3
2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> (x-y-1)^2=0 và (y+2)^2=0
=> x=-1;y=-2
1, x-2=0
x=2
2, -3x-15=0
-3x=15
x=-5
3, 3x+2-x=0
2x+2=0
2x=-2
x=-1
4, 2x-5=10-3x
2x-5-10+3x=0
5x-15=0
5x=15
x=3
5, -x+7=6x-21
-x+7-6x+21=0
-7x+28=0
-7x=-28
x=4
6, 3(x+1)-2=0
3(x+1)=2
x+1=2/3
x=-1/3
7, 8-2(1-2x)=0
2(1-2x)=8
1-2x=4
2x=-3
x=-3/2
1. x = 2
2. x = -5
3. x = -1
4. x = 3
5 x = 4
6. x = -3/9
7. x = -1,5
Đúng k z???
\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
\(ĐKXĐ:\hept{\begin{cases}\sqrt{x^2+x-1}\ge0\\\sqrt{x-x^2+1}\ge0\end{cases}}\)
Vì \(\sqrt{x^2+x-1}\ge0\)
\(\Rightarrow\)Áp dụng bđt Cô-si ta có: \(1+\left(x^2+x-1\right)\ge2\sqrt{x^2+x-1}\)(1)
Tương tự ta có: \(1+\left(x-x^2+1\right)\ge2\sqrt{x-x^2+1}\)(2)
Cộng (1) và (2) ta có:
\(1+\left(x^2+x-1\right)+1+\left(x-x^2+1\right)\ge2\sqrt{x^2+x-1}+2\sqrt{x-x^2+1}\)
\(\Leftrightarrow1+x^2+x-1+1+x-x^2+1\ge2.\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)
\(\Leftrightarrow2+2x\ge2\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)
\(\Leftrightarrow1+x\ge\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\)
\(\Leftrightarrow1+x\ge x^2-x+2\)
\(\Leftrightarrow x^2-x+2-1-x\le0\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\)(3)
Vì \(\left(x-1\right)^2\ge0\forall x\)(4)
Từ (3) và (4) \(\Rightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Thay \(x=1\)vào ĐKXĐ ta thấy \(x=1\) thỏa mãn ĐKXĐ
Vậy \(x=1\)
\(\sqrt{x+x-1}+\sqrt{x-x^2+1}=x\left(x-1\right)+2\left(đk:...\ge x\ge\frac{1}{2}\right)\)( giải bpt này ra x-x2+1>=0 là tìm đc số trong dấu ...)
\(< =>\sqrt{x+x-1}-1+\sqrt{x-x^2+1}-1=x\left(x-1\right)\)
\(< =>\frac{2x-2}{\sqrt{x+x-1}+1}+\frac{x-x^2}{\sqrt{x-x^2+1}+1}=x\left(x-1\right)\)
\(< =>\frac{2\left(x-1\right)}{\sqrt{x+x-1}+1}+\frac{x\left(x-1\right)}{-\sqrt{x-x^2+1}-1}-x\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(\frac{2}{\sqrt{x+x-1}+1}+\frac{x}{-\sqrt{x-x^2+1}-1}-x\right)=0\)
\(< =>x=1\)( bạn đánh giá phần trong ngoặc to = đk ban đầu nhé )
\(3x^4+4x^3-3x^2-2x+1=0\)
\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)
\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)
\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)
\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)
Giữ nguyên bình phương và xét dấu như bình thường
Em bỏ bình phương nên xét dấu bị sai dẫn đến kết quả sai
Gấp lắm giúp mình
\(\sqrt{7x}\)hay là \(\sqrt{7x+5}\)