Tính nhanh: \(\frac{3\cdot15+3\cdot15}{6\cdot50+12\cdot50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(\frac{1}{8}+\frac{1}{8.15}+\frac{1}{15.22}+...+\frac{1}{43.50}\right)\cdot\frac{4-3-5-7-...-49}{217}\)
A = \(\frac{1}{7}.\left(\frac{7}{1.8}+\frac{7}{8.15}+\frac{7}{15.22}+...+\frac{7}{43.50}\right)\cdot\frac{4-\left(3+5+7+...+49\right)}{217}\)
A = \(\frac{1}{7}.\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{43}-\frac{1}{50}\right)\cdot\frac{4-\left(49+3\right)\left[\left(49-3\right):2+1\right]:2}{217}\)
A = \(\frac{1}{7}\cdot\left(1-\frac{1}{50}\right)\cdot\frac{4-52.24:2}{217}\)
A = \(\frac{1}{7}\cdot\frac{49}{50}\cdot\frac{4-624}{217}\)
A = \(\frac{7}{50}\cdot\frac{-620}{217}=-\frac{2}{5}\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(\Rightarrow\dfrac{M}{2}=\dfrac{6:2}{2.5}+...+\dfrac{6:2}{47.50}\)
\(=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{47.50}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{47}-\dfrac{1}{50}\)
\(=\dfrac{1}{2}-\dfrac{1}{50}\)
\(=\dfrac{12}{25}\)
\(\Rightarrow M=\dfrac{12}{25}.2=\dfrac{24}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(\Rightarrow2K=\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{43.45}\)
\(=\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\)
\(=\dfrac{1}{9}-\dfrac{1}{45}\)
\(=\dfrac{4}{45}\)
\(\Rightarrow K=\dfrac{4}{45}:2=\dfrac{2}{45}\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{5}+\dfrac{6}{5}-\dfrac{6}{8}+\dfrac{6}{8}-\dfrac{6}{11}+...+\dfrac{6}{47}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{150}{50}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\dfrac{144}{50}\)
\(M=\dfrac{144}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{5}{45}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\dfrac{4}{45}\)
\(K=\dfrac{2}{45}\)
A=1.5.(3.2)+2.10.(6.2)+3.15.(9.2)+4.20.(12.2)+5.25.(15.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=1.5.3+2.10.6+3.15.9+4.20.12+5.25.15(2.2.2.2.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=2.2.2.2.2
A=32
\(\frac{1\cdot3\cdot5\cdot2+2\cdot10\cdot6\cdot2+3\cdot15\cdot9\cdot2+4\cdot20\cdot12\cdot2+5\cdot25\cdot15\cdot2}{1\cdot3\cdot5+2\cdot10\cdot6+3\cdot15\cdot9+4\cdot20\cdot12+5\cdot25\cdot15 }\)
\(2\cdot2\cdot2\cdot2\cdot2=2^5\)
\(=32\)
\(\frac{4.5.6}{14.15.16}\)=\(\frac{1.1.3}{7.3.4}\)=\(\frac{1.1.1}{7.1.4}\)=\(\frac{1}{28}\)
\(\frac{1\cdot3\cdot5+2\cdot6\cdot10+3\cdot9\cdot15}{3\cdot5\cdot12+6\cdot10\cdot24+9\cdot15\cdot36}=\frac{1+1+1}{12+12+12}=\frac{3\cdot1}{3\cdot12}=\frac{1}{12}\)
\(\frac{45+45}{300+600}\)
\(\frac{90}{900}\)
\(\frac{1}{10}\)
300600