K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2015

x2 +4x+y2-12 =0 => (x+2)2 =(4-y)(4+y) ; vì x;y thuộc Z => 4-y = 4+y => y =0 => (x+2)2 =16

x +2 = 4 => x =2 

hoăc x+2 =-4 => x =-6

=> Pmax=x2 +y2 = (-6)2 +0 = 36 khi x = -6; y =0

14 tháng 8 2017

Chọn đáp án A

T
11 tháng 11 2015

4x^2 + 4x + y^2 - 12=0

<=> 4x^2 +4x +1 +y^2 -13=0

<=> (2x +1)^2 x + y^2=13          (1)

Vì x; y là số nguyên => (2x +1)^2 ; y^2 là 1 số chính phương

Mà 13=2^2 +3^2 

Từ (1) => (2x + 1)^2=2 ^2 ; y^2=3^2 hoặc (2x +1)^2=3^2 ; y^2=2^2

.............

(Tự làm nốt bằng cách tìm ra x; y cụ thể rồi thay vào)

 

 

22 tháng 2 2019

Chọn B.

Phương pháp:

Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.

Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C  để O M - a lớn nhất hoặc nhỏ nhất.

Xét các trường hợp xảy ra để tìm a.

Cách giải: 

19 tháng 11 2019

Chọn B.

22 tháng 2 2018

28 tháng 11 2018

Đáp án B

19 tháng 9 2018

Đáp án C.

Phương pháp giải: Dựa vào giả thiết, đánh giá đưa về tổng các bình phương, từ biểu thức P đưa về hạng tử trong tổng bình phương và áp dụng bất đẳng thức Bunhiacopxki tìm giá trị lớn nhất.

Lời giải:

Vì x2 + y2 > 1 suy ra  log x 2 + y 2 f ( x )  là hàm số đồng biến trên tập xác định

Khi đó 

Xét biểu thức P, ta có 

Áp dụng BĐT Bunhiacopxki, có 

 

23 tháng 1 2017

Đáp án A

29 tháng 4 2018