cho góc xOy và điểm A nằm trong góc đó. Xác định điểm B thuộc tia Ox, điểm C thuộc tia Oy sao cho OB = OC và tổng AB + AC nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ox là đường trung trực của AB, O AB
Nên OA = OB
Tương tự ta có OA = OC
Từ đó suy ra ĐPCM
a: góc xOM=120 độ
b: AB=3+6=9cm
c: BC=AC=9/2=4,5cm
OC=4,5-3=1,5cm
A. Ta có: Góc xOy = 90 độ (do hai trục Ox và Oy vuông góc với nhau)
Góc xOm = 120 độ => góc mOy + góc xOy + góc xOm = 360 độ (tổng góc bên trong của một tam giác)
=> Góc mOy = 150 độ
Do tia Om không trùng với tia Ox và tia Oy
=> Góc xOm = 120 độ
B.Ta có : OA+OA=AB
=> 6+3=AB
=> AB=6cm
C.vì C là trung điểm của AB nên ta có AC = CB = AB/2 = 4,5cm.
Vậy AC=4,5cm
Ta có : 0C=4,5-3=1,5cm
Co :Oy la dg trung truc CA (Oy⊥CA; CK=KA)
⇒AO=BO (1)
Lai co: Ox la duong trung truc AB(Ox ⊥AB; AH=BH)
⇒OA = OC (2)
Tu (1) va(2)⇒OC = OB(DPCM)
(HINH VE MINH HOA)
ko can nhat thiet phai (1) va (2) nhe ban co the suy ra luon cx dc
Xét ΔODB có
\(\dfrac{OA}{OB}=\dfrac{OC}{OD}\)
Do đó: AC//BD
Cách dựng:
- Dựng điểm D đối xứng với A qua Ox
- Dựng điểm E đối xứng với A qua Oy
Nối DE cắt Ox tại B, Oy tại C
Tam giác ABC là tam giác có chu vi nhỏ nhất
Vì ∠ (xOy) < 90 0 nên DE luôn cắt Ox và Oy do đó ∆ ABC luôn dựng được.
Chứng minh:
Chu vi ∆ ABC bằng AB + BC + AC
Vì D đối xứng với A qua Ox nên Ox là trung trực của AD
⇒ AB = BD (tính chất đường trung trực)
E đối xứng với A qua Oy nên Oy là trung trực của AE
⇒ AC = CE (tính chất đường trung trực)
Suy ra: AB + BC + AC = BD + BC + BE = DE (1)
Lấy B' bất kì trên Ox, C' bất kì trên tia Oy. Nối C'E, C'A, B'A, B'D.
Ta có: B'A = B'D và C'A = C'E (tính chất đường trung trực)
Chu vi ∆ AB'C' bằng AB'+ AC’ + B'C'= B'D+C’E+ B'C' (2)
Vì DE ≤ B'D + C’E+ B'C' (dấu bằng xảy ra khi B' trùng B, C' trùng C) nên chu vi của ∆ ABC ≤ chu vi của ∆ A'B'C'
Vậy ∆ ABC có chu vi bé nhất.