CMR:
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{9}{10!}=\frac{9}{10!}\)
\(\frac{9}{11!}< \frac{10}{11!}=\frac{11-1}{11!}=\frac{11}{11!}-\frac{1}{11!}=\frac{1}{10!}-\frac{1}{11!}\)
\(\frac{9}{12!}< \frac{11}{12!}=\frac{12-1}{12!}=\frac{12}{12!}-\frac{1}{12!}=\frac{1}{11!}-\frac{1}{12!}\)
............
\(\frac{9}{1000!}< \frac{999}{1000!}=\frac{1000-1}{1000!}=\frac{1000}{1000!}-\frac{1}{1000!}=\frac{1}{999!}-\frac{1}{1000!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{1}{1000!}< \frac{9}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{1}{1000!}< \frac{10}{10!}-\frac{1}{1000!}=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
\(\Rightarrowđpcm\)
đặt tên là B
B=910!+911!+912!+.............+91000!
Ta thấy :
910!=10−110!=19!−110!
911!<11−111!=110!−111!
91000!<1000−11000!=1999!−11000!
⇒B<19!−110!+110!−111!+............+1999!−11000!
B<19!−11000!
\(\frac{9}{10!}+\frac{10}{11!}+...+\frac{999}{1000!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+...+\frac{1000-1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)
đpcm
Tham khảo nhé~
Chứng minh rằng :
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+........+\frac{9}{1000!}<\frac{1}{9!}\)
Ta đặt biểu thức đã cho là A
suy ra A < (10-1)/10! + (11-1)/11! +...+ (1000-1)/1000!
=> A < 10/10! - 1/10! + 11/11! - 1/11! +...+ 1000/1000! - 1/1000!
=> A < 1/9! - 1/10! + 1/10! - 1/11! +...+ 1/999! - 1/1000!
=> A < 1/9! - 1/1000! < 1/9!
Vậy A < 1/9!
Chúc bạn hoc tốt
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}\)
\(=\frac{10-1}{10!}+\frac{11-2}{11!}+...+\frac{1000-991}{1000!}\)
\(=\frac{10}{10!}-\frac{1}{10!}+\frac{11}{11!}-\frac{1}{11!}+...+\frac{1000}{1000!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\left(đpcm\right)\)