K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

Hình tự vẽ:

Ta có \(\widehat{MCE}=\frac{1}{2}sđ\widebat{MD}=\frac{1}{2}\left(sđ\widebat{MB}+sđ\widebat{BD}\right)\)

\(\widehat{CEM}=\frac{1}{2}\left(sđ\widebat{CM}+sđ\widebat{AD}\right)=\frac{1}{2}\left(sđ\widebat{BM}+sđ\widebat{BD}\right)\)

\(\Rightarrow\widehat{MCE}=\widehat{CEM}\)

Xét tam giác ECM có \(\widehat{MCE}=\widehat{CEM}\left(cmt\right)\)

\(\Rightarrow\Delta ECM\)cân tại M

5 tháng 4 2022

undefined

a: góc AMB=1/2*sđ cung AB=90 độ

góc FEB+góc FMB=180 độ

=>FMBE nội tiếp

b: Xét ΔKAB có

AM,KE là đường cao

KE cắt AM tại F

=>F là trực tâm

=>BF vuông góc AK

17 tháng 4 2020

a) Vì \(OC\perp AB\Rightarrow\widehat{O}=90^o\)

Xét \(\left(O;\frac{AB}{2}\right)\):

\(\Delta ABM\)nt nửa đường tròn, có AB là đường kính

\(\Rightarrow\Delta ABM\)vuông tại M\(\Rightarrow\widehat{AMB}=90^o\)

Xét \(\Delta ANO\)và \(\Delta ABM\)có:

\(\widehat{BAM}\)chung

\(\widehat{AON}=\widehat{AMB}=90^o\)

\(\Rightarrow\Delta ANO\infty\Delta ABM\left(gg\right)\)\(\Rightarrow\frac{AN}{AB}=\frac{AO}{AM}\Rightarrow AN.AM=AO.AB=OA.2OA=2OA^2\)

Vì OA là bán kính của nửa đường tròn nên tích AN.AM ko đổi

b) Xét tg MNOB có \(\widehat{NMB}+\widehat{BON}=90^o+90^o=180^o\).Mà 2 góc ở vị trí đối nhau

\(\Rightarrow Tg\)MNOB là tg nt

Vì \(CD\perp AM\Rightarrow\widehat{D}=90^o\)

Xét tg AODC có: \(\widehat{AOC}=\widehat{CDA}=90^o\).Mà O và D là 2 đỉnh kề nhau nhìn cạnh AC dưới 1gocs 90 độ

\(\Rightarrow\)AODC là tg nt

c)  \(\Delta COD\)cân tại D \(\Rightarrow\widehat{DCO}=\widehat{DOC}\)và CD =OD

Do AODC là tg nt \(\Rightarrow\widehat{DOC}=\widehat{DAO}\)(2 góc nt cùng chắn cung OD) và \(\widehat{DOC}=\widehat{DAC}\)(2 góc nt chắn cung CD)

Suy ra \(\widehat{DAC}=\widehat{DAO}\)

Mà \(\widehat{DAC}\)là góc nt chắn cung CM; \(\widehat{DAO}\)là góc nt chắn cung BM

\(\Rightarrow sđ\widebat{CM=sđ\widebat{BM}\Rightarrow}\)M là điểm chính giữa cung BC (vì M \(\in\)BC)

Vậy \(\Delta DOC\)cân tại D thì M là điểm chính giữa cung BC

OB=OC

MB=MC

=>OM là trung trực của BC

=>OM vuông góc BC tại I

góc CHO+góc CIO=180 độ

=>CHOI nội tiếp