K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 6 2021

Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).

suy ra \(n+1\in BC\left(2,3,4,5\right)\)

Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).

\(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).

- \(n+1=120\Leftrightarrow n=119⋮7\).​

Vậy giá trị nhỏ nhất của \(n\)là \(119\).

3 tháng 4 2017

Để a chia cho 5 dư 1 thì a phải có tận cùng là 6 hoặc 1.

Để a chia cho 2 dư 1 thì a phải có tận cùng là 1 số lẻ.

Suy ra a sẽ có tận cùng là 1.

Giả sử a có dạng là Ab thì chữ số tận cùng là b.

Vậy b = 1.

Ta có Ab = A1.

Để A1 chia hết cho 9 thì ( A + 1 ) phải chia hết cho 9.

Mà 1 chia cho 9 dư 1,suy ra A chia cho 9 phải chia cho 9 dư 8.

 A = 8 ( loại vì 81 chia 7 không dư 3)

A = 17 ( Đúng ).

Vậy số tự nhiên a nhỏ nhất thỏa mãn yêu cầu đề bài là 171.

19 tháng 5 2021

171 nhé bn

2 tháng 1 2018

Gọi số cần tìm là A

vì số đó cộng 2 chia hết cho 5 nên số đó chia 5 dư 3

vì số đó cộng 4 chia hết cho 7 nên số đó chia 7 dư3

=>A:4;5;7 đều dư 3

=>A-3 chia hết cho 4;5;7

mà số nhỏ nhất có 3 chữ số chia hết cho 4;5;7 là 140

Thử lại 143 :4=35(dư3)

             143:5=28(dư3)

             143:7=20(dư 3)

(thỏa mãn đầu bài)

Vậy số cần tìm là 143 

:)))^^^^

13 tháng 3 2020

Số cần tìm là:119

4 tháng 11 2017
 

Gọi số tự nhiên đó là x

Vì( x-1)cho3,4,5 nên (x-1)BC(3;4;5)và xcho 7

3=3;4=22;5=5

BCNN(3;4;5)=22.3.5=60

BC(3;4;5)=B(60)={0;60;120;180;240;...}

x{1;61;121;181;241;301;...}

Mà x7nên x=301.

Vậy số tự nhiên nhỏ nhất thỏa mãn đề bài là 301.


 
4 tháng 11 2017

Số 301 nha

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

7 tháng 1 2015

nhầm số đó chia hết cho 7 

vậy số đó là 119

13 tháng 3 2020

Số cần tìm là:119