K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Xét ∆ABC  vuông tại A, theo định lý Pytago ta có:

(BC)²=(AB)²+(AC)²

15²=9²+AC² suy ra AC=12

Do 9<12<15suy ra AB<AC<BC

Suy ra BÂC<ABC<BÂC

b)xét ,∆IMC và ∆INB

IC=IB(do AI là đường trung tuyến ∆ABC)

IM=IN(gt);CIM=BIN(đd)suy ra ∆IMC=∆INB(c-g-c)

ICM=IBN(2g tương ứng) mà 2 góc này ở vị trí sole trong suy ra CM//BN kéo dài AC//BN

 

 

 

 

 

4 tháng 4 2021

C) Ta có AI là trung tuyến của ∆ABC vuông tại A(1)có AI ứng với BC mà BC là cạnh huyền

Suy ra AI=½BC=IC suy ra AI=IC suy ra ∆AIC cân tại I 

Xét trong ∆AIC cân, có IM là đường cao suy ra IM là đường trung trực ∆AIC suy ra MA=MCsuy ra BM là đường trung tuyến ∆ABC(2)

Từ (1)và(2) ta có :

AI và BM là 2 đường trung tuyến của∆ABC cắt nhau tại G suy ra G là trọng tâm của ∆ABC

Ta có :½ BC+½AC=½.27 =27/2 suy ra BI+AM=27/2

Xét BM và BI ta có : BM>AB( QH giữa đường vuông góc và đường xiên)suy ra 12<BM(1)

BI=BC/2=15/2<12(2)

Từ (1)và (2) ta có: BI<12<BM suy ra BI<BM(3)

Xét ∆AIM vuông tại M có AI là cạnh huyền; AM là cạnh góc vuông 

Suy ra:AM<AI(4)

Từ (3)và (4) ta có 

BM+AI>BI+AM=27/2

Suy ra BM+AI>27/2

 

 

 

a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có

AB=AE

AC chung

=>ΔABC=ΔAEC

b: Xet ΔCEB có

CA,BH là trung tuyến
CA cắt BH tại M

=>M là trọng tâm

=>CM=2/3*12=8cm

c: Xét ΔCBE có

A là trung điểm của BE

AK//CE
=>K la trung điểm của BC

=>E,M,K thẳng hàng

a: Xét ΔABC có

M,I lần lượt là trung điểm của CB,CA

=>MI là đường trung bình

=>MI//AB và MI=AB/2

mà MI=MK/2

nên MK=AB

MI//AB

AB vuông góc AC

=>MI vuông góc AC

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

mà AC vuông góc MK

nên AMCK là hình thoi

b: Xét tứ giác AKMB có

MK//AB

MK=AB

=>AKMB là hình bình hành

3 tháng 1

Đúng ko?

 

6 tháng 6 2021

Đây nhé!

Không có mô tả.

Không có mô tả.

Không có mô tả.

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE
b: ΔMBA=ΔMCE

=>góc MBA=góc MCE

=>AB//CE
c: AB<AC<CB

=>góc C<góc B<góc A

a: Xét ΔABI và ΔACI có

AB=AC
AI chung

BI=CI

DO đó: ΔABI=ΔACI

b: Ta có:ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

a: Xét ΔABI và ΔACI có 

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

b: ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: AC=8cm

nên AB=8(cm)

Xét ΔBAC có

I là trung điểm của BC

M là trung điểm của AC

Do đó: IM là đường trung bình

=>IM=AB/2=8/2=4(cm)

a: AB<AC<BC
=>góc C<góc B<góc A

b: Xet ΔABC có

BC^2=AB^2+AC^2

=>ΔBCA vuông tại A

Xet ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

c: Xét ΔCBD có

CA,BE là trung tuyến

CA cắt BE tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
26 tháng 2 2020

A B C H D

Xét tam giác ABC có góc B > góc C suy ra AC > AB

Xét tam giác vuông ABH và tam giác vuông ACH

chung AH

có AC > AB (CMT)

suy ra HC > HB

c) Vì HC > HB (CMT)

Xét tam giác vuông BHD và tam giác vuông CHD

Có chung DH , BC >HB nên DC >DB

Xét tam giác BDC có DC > DB nên góc DBC > góc DCB

26 tháng 2 2020

Bài 16: 

A B C M D

Xét tam giác ABM và tam giác DCM

có AM=DM (GT)

góc AMB=góc DMC (đối đỉnh)

BM=MC (GT)

suy ra tam giác ABM=tam giác DCM (c.g.c)   (1)

b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)

mà  góc MAB so le trong  góc MDC

suy ra AB // CD 

c) Từ (1) suy ra AB = CD

Xét tam giác ACD có AC + CD > AD

mà AD=2AM, AB=CD (CMT)

suy ra AC +AB >2AM