Cho ΔABC vuông tại A, có BC = 15cm, AB = 9 cm. a) Tính độ dài AC và so sánh các góc của ΔABC b) Vẽ trung tuyến AI của ΔABC, kẻ IM ⊥ AC. Trên tia đối của tia IM lấy điểm N sao cho IM = IN. Chứng minh ΔIMC = ΔINB, suy ra BN // AC c) BM cắt AI tại G. Chứng minh G là trọng tâm của ΔABC và AI + BM > \(\frac{27}{2}\)
Xét ∆ABC vuông tại A, theo định lý Pytago ta có:
(BC)²=(AB)²+(AC)²
15²=9²+AC² suy ra AC=12
Do 9<12<15suy ra AB<AC<BC
Suy ra BÂC<ABC<BÂC
b)xét ,∆IMC và ∆INB
IC=IB(do AI là đường trung tuyến ∆ABC)
IM=IN(gt);CIM=BIN(đd)suy ra ∆IMC=∆INB(c-g-c)
ICM=IBN(2g tương ứng) mà 2 góc này ở vị trí sole trong suy ra CM//BN kéo dài AC//BN
C) Ta có AI là trung tuyến của ∆ABC vuông tại A(1)có AI ứng với BC mà BC là cạnh huyền
Suy ra AI=½BC=IC suy ra AI=IC suy ra ∆AIC cân tại I
Xét trong ∆AIC cân, có IM là đường cao suy ra IM là đường trung trực ∆AIC suy ra MA=MCsuy ra BM là đường trung tuyến ∆ABC(2)
Từ (1)và(2) ta có :
AI và BM là 2 đường trung tuyến của∆ABC cắt nhau tại G suy ra G là trọng tâm của ∆ABC
Ta có :½ BC+½AC=½.27 =27/2 suy ra BI+AM=27/2
Xét BM và BI ta có : BM>AB( QH giữa đường vuông góc và đường xiên)suy ra 12<BM(1)
BI=BC/2=15/2<12(2)
Từ (1)và (2) ta có: BI<12<BM suy ra BI<BM(3)
Xét ∆AIM vuông tại M có AI là cạnh huyền; AM là cạnh góc vuông
Suy ra:AM<AI(4)
Từ (3)và (4) ta có
BM+AI>BI+AM=27/2
Suy ra BM+AI>27/2