Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC và tam giác DEC ta có
^BAC = ^EDC = 900
^C_ chung
Vậy tam giác ABC ~ tam giác DEC ( g.g )
b, tam giác ABC vuông tại A
Áp dụng định lí Py ta go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=9+16=25\Rightarrow BC=5\)cm
Vì AD là tia phân giác ^A nên \(\frac{AB}{AC}=\frac{BD}{DC}\)mà DC = BC - BD = 5 - BD
\(\Rightarrow\frac{3}{4}=\frac{BD}{5-BD}\Rightarrow15-3BD=4BD\)
\(\Rightarrow7BD=15\Rightarrow BD=\frac{15}{7}\)cm
c, Ta có : \(DC=BC-BD=5-\frac{15}{7}=\frac{20}{7}\)cm
Áp dụng định lí Py ta go cho tam giác vuông tại D ta được :
\(AD^2+DC^2=AC^2\Rightarrow AD^2=AC^2-DC^2=16-\frac{400}{49}\)
\(\Rightarrow AD^2=\frac{384}{49}\Rightarrow AD=\frac{8\sqrt{6}}{7}\)xem sai ở đâu hộ mình nhé, chứ nếu theo hệ thức lượng thì như này
*\(AD.BC=AB.AC\Rightarrow AD=\frac{12}{5}\)*
d, \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.3.4=6\)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
Xét ∆ABC vaf∆DEC có
Góc BAC\(\widehat{ }\)=góc CDE(=90°)
Góc C chung
=>∆ABC ~∆DEC(gg)
Áp dụng pytago ta có
BC2=3^2+4^2=>BC=5
Ta cocócó
BDD/DDCDC=3/4
=>BBDBD/BBCBC=3/7=>BBDBD=15/7
a xet ABC và DEC
chung C
bAc=eDc=90 độ
=> ABC và DEC đồng dạng (gg) (1)
b BC^2=3^2+5^2=34
=> BC= căn (34)
BD/DC=3/5
BC/DC=8/5
<=> căn 34/DC=8/5
=> DC=căn(34) *5/8
=> BD=căn(34) -DC=3(căn(34))/8
c Sabc=3*5/2=15/2
sabde= 15/2-15/2*17/32=225/64