K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

29 tháng 5 2017

xem lại đầu bài đi bạn ơi,  phương trình đường thẳng sai rồi ...

29 tháng 5 2017

( d ) : y = 2mx+2

28 tháng 8 2023

\(\left\{{}\begin{matrix}\left(P\right):y=x^2\\\left(d\right):y=-x+2\end{matrix}\right.\)

a) Tọa độ giao điểm của (P) và (Q) là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}y=x^2\\y=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2+x-2=0\left(1\right)\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) \(\left(a+b+c=1+1-2=0\right)\)

\(hpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\end{matrix}\right.\)

Vậy tọa độ giao điểm của (P) và (Q) là \(A\left(1;1\right)\&B\left(-2;4\right)\)

 

28 tháng 8 2023

a) Phương trình hoành độ giao điểm : 

x2 = - x + 2

<=> (x - 1)(x + 2)  = 0 

<=> \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với x = 1 ta được y = 1

Với x = -2 ta được y = 4

Vậy tọa độ giao điểm là A(1; 1) ; B(-2;4)

b) Gọi C(-2 ; 0) ; D(1;0) 

ta được \(S_{AOB}=S_{ABCD}-S_{BOC}-S_{AOD}\)

\(=\dfrac{\left(BC+AD\right).CD}{2}-\dfrac{BC.CO}{2}-\dfrac{AD.DO}{2}\)

\(=\dfrac{\left(4+1\right).3}{2}+\dfrac{4.2}{2}+\dfrac{1.1}{2}=12\) (đvdt) 

30 tháng 5 2017

Xét phương trình hoành độ giao điểm 

\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)

Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có

\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)

theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)

\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)

\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)

Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)

17 tháng 8 2017

Tam giac chưa vuông mà

18 tháng 5 2015

Phương trình hoành độ giao điểm của (P) và (d) : \(\frac{1}{4}.x^2=mx+1\)  (1)

<=> x2 = 4mx + 4 <=> x2 - 4mx - 4 = 0

\(\Delta\)' = (-2m)2 + 4 = 4m2 + 4 \(\ge\) 4 > 0 với mọi m

=> (1) luôn có 2 nghiệm phân biệt 

Vậy (P) luôn cắt (d) tại 2 điểm  phân biệt

b) Gọi 2 nghiệm đó là x1; x2

Theo hệ thức Vi ét có: 

 x1 +  x2 = 4m

 x1 x2 = - 4 < 0

=>  x1; x trái dấu . 

A; B là 2 giao điểm => A (x1; mx1 + 1); B(x2; mx2 + 1) . Giả sử x1 < 0 < x2

+)  A; B nằm về hai phía của trục tung do  x1; x trái dấu . 

Gọi H; K lần lượt là hình chiếu của A; B xuống Ox => H(x1; 0); K(x2; 0)

Khi đó S OAB = S AHKB - SAHO - SBKO

S AHKB = (AH + BK). HK : 2 = (mx1 + 1 +mx2 + 1 ) .(- x1 + x2) : 2 = \(\frac{\left(m\left(x_1+x_2\right)+2\right)\left(x_2-x_1\right)}{2}=\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)

SAHO = AH.HO : 2 = (mx+ 1). (-x1) : 2  = \(\frac{-mx^2_1-x_1}{2}\)

SBKO = BK.KO : 2 = (mx2 + 1). x2 : 2 = \(\frac{mx^2_2+x_2}{2}\)

Vậy SOAB \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)\(\frac{-mx^2_1-x_1}{2}\) - \(\frac{mx^2_2+x_2}{2}\)

\(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)+m\left(x_1^2-x_2^2\right)+x_1-x_2}{2}=\frac{x_2-x_1}{2}\)

ta có: \(\left(x_2-x_1\right)^2=x_2^2-2x_2x_1+x_1^2=\left(x_1+x_2\right)^2-4x_1.x_2\)

= (4m)2 - 4.(-4) = 16m2 + 16

=> x2 - x1 = \(\sqrt{16m^2+16}=4.\sqrt{m^2+1}\)

Vậy SOAB = \(4.\sqrt{m^2+1}\)

19 tháng 5 2015

 CÁI ĐỀ NÀY 
AI GIÚP TÔI ĐƯỢC KHÔNG CHIỀU MAI TỚ PHẢI NỘP ÙI PLEASE~~~~~!!

BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2 
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng 
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB 
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P