K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

26 tháng 10 2020

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.

30 tháng 3 2017

chu vi = 1 => a+b+c=1

viết lại đẳng thức:  a/(a+b+c-a)+ b/(a+b+c-b) + c/(a+b+c-c) = 3/2

<=>a/b+c + b/c+a + c/a+b = 3/2

cộng 3 vào 2 vế rút ra được (a+b+c)(1/a+b + 1/b+c + 1/c+a ) = 9/2

<=>1/(a+b)+1/(b+c)+1/(c+a)=9/2(do a+b+c=1)

Sử dụng bđt Schwarz : 1/(a+b)+1/(b+c)+1/(c+a) >/ (1+1+1)2/2(a+b+c) = 9/2

đẳng thức xảy ra <=> a+b=b+c=c+a <=> a=b=c ta có đpcm

30 tháng 3 2017

nhìn kỹ lại đề bạn ơi

27 tháng 10 2019

Lên GG gõ bất đẳng thức Nesbitt nhé

NV
27 tháng 10 2019

\(P=\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

\(\Rightarrow\Delta ABC\) đều

20 tháng 3 2016

ABC là tam giác cân

20 tháng 3 2016

ABC là tam giác cân

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .