K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.

19 tháng 1 2020

có đúng đề không bạn

13 tháng 10 2018

ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)

=>\(3>=3\sqrt[3]{xyz}\)

=>\(1>=\sqrt[3]{xyz}\)

=>\(1>=xyz\)

dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1

vay x=y=z=1

10 tháng 5 2018

ta có:\(\frac{a^2-4}{2x-5}=2+a\)

\(ĐKXĐ:x\ne\frac{5}{2}\)

\(\Rightarrow\left(2+a\right).\left(2x-5\right)=a^2-4\)

\(\Rightarrow2x-5=\frac{a^2-4}{a+2}=a-2\)

\(\Leftrightarrow x=\frac{a-3}{2}\)

vì x là số nguyên dương nhỏ hơn 2  nên x=1

\(\Leftrightarrow1=\frac{a-3}{2}\)

\(\Leftrightarrow a-3=2\)

\(\Leftrightarrow a=5\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{7}\)

\(\Rightarrow 7(x+y)=xy\)

\(\Leftrightarrow (xy-7x)-7y=0\)

\(\Leftrightarrow x(y-7)-7(y-7)=49\)

\(\Leftrightarrow (x-7)(y-7)=49(*)\)

Vì $x,y$ đều là số nguyên dương nên \(x-7,y-7\geq -6\)

Do đó từ $(*)$ ta có xét những TH sau:

TH1: \(\left\{\begin{matrix} x-7=1\\ y-7=49\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=8\\ y=56\end{matrix}\right.\) (t/m)

TH2: \(\left\{\begin{matrix} x-7=49\\ y-7=1\end{matrix}\right.\Rightarrow x=56; y=8\) (t/m)

TH3: \(\left\{\begin{matrix} x-7=7\\ y-7=7\end{matrix}\right.\Rightarrow x=y=14\) (t/m)

Vậy ......

NV
16 tháng 11 2018

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\Rightarrow\dfrac{1}{x}=\dfrac{y-7}{7y}\Rightarrow x=\dfrac{7y}{y-7}=7+\dfrac{49}{y-7}\)

Để x, y nguyên \(\Rightarrow49⋮y-7\Rightarrow y-7=Ư\left(49\right)=\left\{-49;-7;-1;1;7;49\right\}\)

\(y-7=-49\Rightarrow y=-42< 0\) (loại)

\(y-7=-7\Rightarrow y=0\) (loại)

\(y-7=-1\Rightarrow y=6\Rightarrow x=-42< 0\) (loại)

\(y-7=1\Rightarrow y=8\Rightarrow x=56\)

\(y-7=7\Rightarrow y=14\Rightarrow x=14\)

\(y-7=49\Rightarrow y=56\Rightarrow x=8\)

Vậy pt có 3 cặp nghiệm nguyên dương \(\left(x;y\right)=\left(56;8\right);\left(14;14\right);\left(8;56\right)\)

1 tháng 2 2019

Có nhiều cách để làm bài này nhé!

Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm

1 tháng 2 2019

PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)