cho hình thang vuông ABCD. M là trung điểm AD. Qua M kẻ đường thẳng vuông góc với AD cắt BC tại N. AB = 4cm, CD = 6cm.
a.Tính MN
b.Chứng minh: góc BAN = góc CDN
Giúp e vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ là đề bài này bị sai hay sao đó, vì theo đề bài thì điểm M sẽ trùng với điểm I ( AD và BC đều vuông góc tại M và I ) . bạn có thể thử sửa đề thành : " qua N kẻ đường thẳng vuông góc với AD ,cắt đường thẳng M vuông góc với BC tại I " ( mình không chắc lắm nhưng mà bạn có thể thử .
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
\(a,\left\{{}\begin{matrix}AM=MD\\AB//MN//CD\left(\perp AD\right)\end{matrix}\right.\Rightarrow BN=NC\Rightarrow MN\) là đtb hình thang ABCD
\(\Rightarrow MN=\dfrac{AB+CD}{2}=5\left(cm\right)\)
\(b,\Delta AND\) có MN là đường cao \(\left(MN\perp AD\right)\) cũng là trung tuyến \(\left(AM=MD\right)\) nên cân tại M
\(\Rightarrow\widehat{NAD}=\widehat{NDA}\\ \Rightarrow\widehat{BAD}-\widehat{NAD}=\widehat{CDA}-\widehat{NDA}\left(\widehat{BAD}=\widehat{CDA}=90^0\right)\\ \Rightarrow\widehat{BAN}=\widehat{CDN}\)