A=\(\frac{16}{20.24}+\frac{16}{24.28}+\frac{16}{28.32}+....+\frac{16}{76.80}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=4\left(\frac{4}{20.24}+\frac{4}{24.28}+...+\frac{4}{76.80}\right)\)
\(=4\left(\frac{1}{20}-\frac{1}{24}+\frac{1}{24}-\frac{1}{28}+...+\frac{1}{76}-\frac{1}{80}\right)\)
\(=4\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=4\times\frac{3}{80}\)
\(=\frac{12}{80}=\frac{3}{20}<1\)
đpcm
\(C=9\cdot\left(\frac{\frac{26299}{2023}-\frac{3757}{2023}-\frac{91}{2023}}{\frac{8092}{2023}-\frac{1156}{2023}-\frac{28}{2023}}\right):\left(\frac{\frac{840255}{21545}+\frac{168051}{21545}+\frac{6045}{21545}+\frac{27105}{21545}}{\frac{344720}{21545}+\frac{68944}{21545}+\frac{2480}{21545}+\frac{11120}{21545}}\right)\cdot\frac{158158}{164164}\)
\(C=9\cdot\left(\frac{\frac{22451}{2023}}{\frac{6908}{2023}}\div\frac{\frac{1041456}{21545}}{\frac{427264}{21545}}\right)\cdot\frac{158158}{164164}\)
\(C=9\cdot\left(\frac{13}{4}\div\frac{39}{16}\right)\cdot\frac{158158}{164164}\)
\(C=9\cdot\frac{4}{3}\cdot\frac{2\cdot79\cdot2\cdot79}{2\cdot82\cdot2\cdot82}=9\cdot\frac{4}{3}\cdot\frac{79}{82}\)
\(C=\frac{474}{41}\)
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
\(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}:\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{121}}\)
\(=\frac{5\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}{8\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}:\frac{15\left(1-\frac{1}{11}+\frac{1}{121}\right)}{16\left(1-\frac{1}{11}+\frac{1}{121}\right)}\)
\(=\frac{5}{8}:\frac{15}{16}\)
\(=\frac{2}{3}\)
Cac ban giup mik voi, mik k cho! ( 10 k cho 3 nguoi dau tien tra loi cau hoi cua mik)
cho a,b,c không âm a+b+c=3 CMR
\(\frac{a}{b^3+16}+\frac{b}{c^3+16}+\frac{c}{a^3+16}\ge\frac{1}{6}.\)
Ta có :
\(\frac{a}{b^3+16}=\frac{a}{16}-\frac{ab^3}{16\left(b^3+16\right)}\ge\frac{a+b+c}{16}-\frac{ab^2+bc^2+ca^2}{192}.\)(1)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)ta có:
\(\text{a(a−b)(b−c)≥0 ⇔abc+a^2b≥ab^2+ca^2}\)
Ta có: \(ab^2+bc^2+ca^2+abc\le bc^2+2abc+a^2b=b(a+c)^2\le\frac{4\left(a+b+c\right)^3}{27}=4\)(2)
Từ (1) và (2) suy ra dpcm
Dấu ''='' xảy ra khi (a,b,c)=(0,1,2)(a,b,c)=(0,1,2) cùng các hoán vị.
Gỉa sử \(a\ge b\ge c\)
Ta có:
\(b\le\frac{a+b+c}{3}\)(1)
\(\left(a+c\right)^2\le\left(\frac{2\left(a+b+c\right)}{3}\right)^2=\frac{4\left(a+b+c\right)^2}{9}\)(2)
nhân theo vế (1)(2) suy ra dpcm
Ta có \(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{1}{4}} \right)^2} - 1 = \frac{{ - 7}}{8}\)
Chọn B
\(A=4\left(\frac{1}{20}-\frac{1}{80}\right)=4.\frac{3}{80}=60\)
\(A=\frac{16}{20\cdot24}+\frac{16}{24\cdot28}+\frac{16}{28\cdot32}+...+\frac{16}{76\cdot80}\)
\(A=4\left[\frac{4}{20\cdot24}+\frac{4}{24\cdot28}+\frac{4}{28\cdot32}+...+\frac{4}{76\cdot80}\right]\)
\(A=4\left[\frac{1}{20}-\frac{1}{24}+...+\frac{1}{76}-\frac{1}{80}\right]\)
\(A=4\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(A=4\left[\frac{4}{80}-\frac{1}{80}\right]=4\cdot\frac{3}{80}=\frac{4\cdot3}{80}=\frac{1\cdot3}{20}=\frac{3}{20}\)