K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

đặt A= 0,7x^4+0,2^2-5-0,3x^4-0,2x^2+8

        =0,4x^4+3

        vì x^4 luôn dương với mọi x

suy ra biểu thức A luôn dương với mọi giá trị của x (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$

Do đó ta có đpcm.

12 tháng 5 2021

C trợ giúp câu mới nhất em gửi trong inb nhé !

10 tháng 3 2016

mấy bn xem mk giải thử chứ mk ko bít đúng ko luôn !!! hjhj

ta có: 0,7x4+0,2x2-5+0,3x4-1/5x2+8

       = 0,7x4+0,3x4+0,2x2-1/5x-5+8

      = x4+3 lớn hơn hoặc bằng 3 >0 vì x4 lớn hơn hoặc bằng 0 với x E R

xem rùi cho ý kiến đừng nói này nói nọ !!!!

duyệt đi

11 tháng 3 2018

bai nay kho qua

11 tháng 3 2018

Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)\(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)

\(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3

Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

12 tháng 3 2022

\(\Leftrightarrow8x^2+5=0\)

do 8x^2 >0; 5>0

\(\Rightarrow8x^2+5>0\forall x\)

19 tháng 7 2021

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y