Cho tam giác ABC vuông tại A, I là điểm nằm trong D và cách đều 3 cạnh . Vẽ ID vuông góc với BC tại D và ID = r
CMR : AB +AC-BC = 2r
Giải gấp dùm em với ạ. Xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEID có
góc AEI=góc ADI=góc DAE=90 độ
nên AEID là hình chữ nhật
b: Xét ΔBAC co DI//AC
nên DI/AC=BI/BC=BD/BA=1/2
=>D là trung điểm của AB
Xét ΔBAC có EI//AB
nên EI/AB=CI/CB=CE/CA=1/2
=>E là trung điểm của AC
=>DI//CE và DI=CE
=>DICE là hình bình hành
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>DE//IH
ΔHAC vuông tại H
mà HE là trung tuyến
nên HE=AC/2=DI
Xét tứ giác IHDE có
IH//DE
ID=HE
Do đó: IHDE là hình thang cân
a: Xét ΔDIB vuông tại D và ΔEIC vuông tại E có
IB=IC
góc B=góc C
=>ΔDIB=ΔEIC
b: Xét ΔIDE có ID=IE
nên ΔIDE cân tại I
c: AB+AC>BC=2BI
a)Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2<=>BC2-AB2=AC2=>AC2=152-122=81=>AC=9
b) Xét \(\Delta\)DBM và \(\Delta\)DCM:
DMB=DMC=90
BM=CM( M là trung điểm BC)
DM:chung
=>\(\Delta\)DBM=\(\Delta\)DCM(c-g-c)=>DC=DB
Xét \(\Delta\)ACD:A=90=>DC>DA
Mà DC=DB(chứng minh trên)
Nên:AD<DB
c)Xét \(\Delta\)BCG:BA \(\perp\)CG;GM\(\perp\)BC
Mà BA cắt GM tại D
Nên: D là trực tâm tam giác BCG
Lại có:CH\(\perp\)GB
Suy ra: C;D;H thẳng hàng
c)Xét \(\Delta\)GBC:GM là đường cao đồng thời là đường trung tuyến
=>\(\Delta\)GBC cân tại G=>GM là đường phân giác
Xét \(\Delta\)GDA và \(\Delta\)GDH:
GAD=GHD=90
GD:chung
AGD=HGD
=>\(\Delta\)GAD=\(\Delta\)GDH(cạnh huyền- góc nhọn)
=>AD=HD=>DAH=DHA=(180-HDA)/2
Xét \(\Delta\)DBC:DC=DB(chứng minh trên)=>DCB=DBC=(180-BDC)/2
Do HDA=BDC(đối đỉnh)
Nên AHD=BCD
Mà C;H;D thẳng hàng(chứng minh trên)
Suy ra AH//BC
a: Xét ΔABF có
AE vừa là đường cao, vừa là phân giác
nen ΔABF cân tại A
b: Xét tứ giác HFKD có
HF//DK
HF=DK
Do đó: HFKD là hình bình hành
=>DH//KF và DH=KF
c: Xét ΔABC co AB<AC
nên góc C<góc ABC
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID