Bài 1: Chứng minh đẳng thức sau:
\(E\frac{Y}{A}=A\frac{Y}{E}\)
Gửi đến: The Coconut - Trang của The Coconut - Học toán với OnlineMath
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh ơi bài này cô em dạy là dùng Schwarz ạ:))
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+z\right)+\left(x+y\right)}\le\frac{x}{4}\left(\frac{1}{x+z}+\frac{1}{x+y}\right)=\frac{x}{4\left(x+z\right)}+\frac{x}{4\left(x+y\right)}\)
Tương tự rồi cộng lại:
\(LSH\le\frac{3}{4}=RHS\)
Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V
Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)
Ta có : \(y=\ln\left(\frac{1}{1+x}\right)\Rightarrow y'=\frac{-\frac{1}{\left(1+x\right)^2}}{\frac{1}{1+x}}=\frac{-1}{1+x}\)
\(\Rightarrow\begin{cases}xy'+1=\frac{-x}{1+x}+1=\frac{1}{1+x}\\e^y=e^{\ln\left(\frac{1}{1+x}\right)}=\frac{1}{1+x}\end{cases}\)
\(\Rightarrow xy'+1=e^y\) (điều phải chứng minh)
Lại đổi ảnh thành cái mặt Troller ngáo cần đấy rồi ak ???
Mà chắc phải thay biệt danh lại thành Coconunt chứ không phải là Laughing Cow nữa nhỉ
Sở thích cũng sẽ đổi thành ăn dừa hơn là phô mai con bò cười ( điểm đặc biệt là không ăn cùi với uống nước dừa mà chỉ thích đi gặm vỏ dừa thôi đúng không )
đặt x=a/(b-c)
y=b/(c-a)
z=c/(a-b)
khi đó đẳng thức cần cm trở thành:
(x+y+z)(1/x+1/y+1/z)=9
<=>1+x/y+x/z+y/x+1+y/z+z/x+z/y+1=9
<=>3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)=9
<=>x/y+y/x+x/z+z/x+y/z+z/y=6 (1)
dùng bđt :x/y+y/x>=2 với mọi x;y>0
khi đó x/y+y/x+x/z+z/x+y/z+z/y>=6 dấu "=" xảy ra khi x=y=z>0 (2)
từ (1) và (2)=>x=y=z
<=>a/(b-c)=b/(c-a)=c/(a-b)
....
xét \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)
vì a và b là số dương nên \(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\forall a,b\in R^+\)
vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)