1. tìm tích của A= \(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times..\times\frac{899}{900}\)
2. CMR \(\frac{1}{5}+\frac{1}{6}+..+\frac{1}{17}< 2\)
3. tính \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{10.11.12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)
ta gọi B là biểu thức thứ2
\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)
\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)
\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)
\(\Rightarrow x=1\)
mk nghĩ vậy bạn ạ, mk mong nó đúng
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}....\frac{29.31}{30.30}\)
\(A=\frac{1.2.3.4....29}{2.3.4....30}.\frac{3.4.5.6...31}{2.3.4...30}\)
\(A=\frac{1}{30}.\frac{31}{2}\) (Rút gọn theo chiều /// và \\\ nhé)
\(A=\frac{31}{60}\)
Chúc học tốt!~~
A=3/4x8/9x15/16x24/25x...x899/900
A=1.3/22 x 2.4/33 x 3.5/42 x 4.6/55 x ... x 29.31/302
A=1.2.3.4...29/2.3.4.5...30 x 3.4.5.6...31/2.3.4.5...30
A=1/30 x 31/2
A=31/60
a.5/6 - 26/5 X 1/13 = 13/30
b.( 19/23 - 22/46 ) X 23/46 = 3/23
c.25/8 x 14/30 = 35/24
d.( 3/4 x 5/7 ) x ( 20/9 x 14/15 ) = 10/9
e.4/35 x 25/32 x 38/24 = 95/672
g. 1/2 x 3/4 x 2/3 x 4/5 = 1/5
h.5/6 x 11/4 - 5/4 x 23/6 = -5/2
i.9/16 x 13/4 - 9/4 x 5/16 + 9/16 x 17/4 = 225/64
k.( 7 x 1/3 ) x ( 1/7 x 6 ) = 2
m.2/3 x ( 3/5 + 3/7 ) = 34/35
n.4/5 x ( 5/8 + 7/4 ) = 19/10
p.( 1/33 + 31/333 - 341/3333 ) x ( 1/2 - 1/3 - 1/6 ) = 0
mih giành cả nửa tiếng để giải đó , k nha
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)
\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)
\(\Leftrightarrow2M=\frac{65}{132}\)
\(\Leftrightarrow M=\frac{65}{132}\div2\)
\(\Leftrightarrow M=\frac{65}{264}\)
1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)