K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

ĐKXĐ: \(x\ne-3;x\ne-m\), ta có:

\(\frac{x-m}{x+3}+\frac{x-3}{x+m}=2\)\(\Rightarrow x^2-m^2+x^2-9=2\left(x+3\right)\left(x+m\right)\)

<=> \(2x^2-m^2-9=2\left(x^2+3x+3m+mx\right)\)

\(\Leftrightarrow-2\left(m+3\right)x=\left(m+3\right)^2\left(1\right)\)

Với m =3 thì (1) có dạng 0x=0. Nghiệm đúng với mọi x tmđk \(\hept{\begin{cases}x\ne-3\\x\ne-m\end{cases}}\), do đó tập nghiệm của phương trình là x\(\ne\pm3\)

Với m\(\ne\)-3 thì phương trình (1) có nghiệm \(x=-\frac{\left(m+3\right)^2}{2\left(m+3\right)}=-\frac{m+3}{2}\)

Để giá trị này là nghiệm của phương trình thì ta phải có:

\(-\frac{m+3}{2}\ne-3\)và \(-\frac{m+3}{2}\ne-m\)tức là \(m\ne-3\)

vậy nếu \(m\ne\pm3\)thì \(x=-\frac{m+3}{2}\)là nghiệm 

Kết luận...........

\(\frac{x-m}{x-2}-\frac{x+m}{x+1}\)

\(=\frac{x^2+x-mx-m-x^2+2x+mx-2m}{\left(x-2\right)\left(x+1\right)}\)

\(=\frac{3\left(x-m\right)}{\left(x-2\right)\left(x+1\right)}\)

vậy ...........

25 tháng 3 2021

tiếp rồi làm sao

17 tháng 5 2016

a) thay vô lập đenta giải ra

17 tháng 5 2016

b) giải hệ pt 1/x1+1/2x2=1/30

x1+x2=2

xong thay vô

x1*x2=m ok

Thay x=3 vào pt, ta được:

9-3(m-2)-m=13

=>9-m-3m+6=13

=>-4m+15=13

=>-4m=-2

=>m=1/2

14 tháng 8 2021

\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)

Để pt có 2 nghiệm pb : \(m< 2\)

Theo định lí vi - et :

\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)

Mà \(x_1=3x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)

15 tháng 8 2021

A=6

B=-6

C=-15

D=15

2 tháng 3 2018

Sử dụng định lí Vi-ét:

\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)

Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.

Sau đó bạn viết định lí Vi-ét và áp dụng và (*) 

Kết hợp cả hai điều kiện lại là ra kết quả đúng.

4 tháng 3 2018

Cảm ơn ạ

2 tháng 5 2016

dễ lắm bạn mình cm pt đã cho luôn có hai nghiệm pb với mọi m sau đó áp dụng viet tính tích và tổng hai nghiệm  rồi quy đồng hệ thức đứa về dạng tích tổng rồi thay vô là dc

20 tháng 4 2020

ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)

\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1) 

=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0 

<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0 

< => ( 2m + 5 ) x + 2 = 0  (2)

TH1: 2m + 5 = 0 <=> m = -5/2 

Khi đó (2) trở thành:  0x + 2 = 0 => phương trình vô nghiệm với mọi x 

=> m = -5/2 thỏa mãn

TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2 

khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)

( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1

<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)

Giải: \(-\frac{2}{2m+5}=-m-1\) 

<=> 2 = ( m + 1 ) ( 2m + 5 ) 

<=> 2m^2 +7m +3= 0 

<=> m = -1/2 hoặc m = -3  (tm m khác -5/2)

Giải: \(-\frac{2}{2m+5}=2\)

<=> 2m + 5 = - 1 <=> m = - 3 (tm)

Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.