Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1...
Đọc tiếp
Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1
b, B = ( 2sin ⁶x - 3sin ⁴x - 4sin²x ) +( 2cos⁶x - 3 cos⁴x- 4cos⁴x
c, C= sin⁴x + 3cos⁴x -1 / sin⁶x + cos⁶x + 3cos⁴x-1
Giải giúp tớ 2 bài này vs tớ cảm ơn nhìu
Giả sử các biểu thức đều xác định:
\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+tan^2a=1+tan^2a+tan^2a=1+2tan^2a\)
\(tan^2a-sin^2a=sin^2a\left(\frac{1}{cos^2a}-1\right)=sin^2a\left(\frac{1-cos^2a}{cos^2a}\right)=sin^2a.\frac{sin^2a}{cos^2a}=tan^2a.sin^2a\)
\(\frac{cosa}{1+sina}+tana=\frac{cosa\left(1-sina\right)}{\left(1+sina\right)\left(1-sina\right)}+\frac{sina.cosa}{cos^2a}=\frac{cosa-sina.cosa}{1-sin^2a}+\frac{sina.cosa}{cos^2a}\)
\(=\frac{cosa-sina.cosa+sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)
\(\frac{tanx}{sinx}-\frac{sinx}{cotx}=\frac{tanx}{sinx}-sinx.tanx=tanx\left(\frac{1}{sinx}-sinx\right)=\frac{sinx}{cosx}\left(\frac{1-sin^2x}{sinx}\right)=\frac{sinx.cos^2x}{cosx.sinx}=cosx\)